Home > Press > Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity
![]() |
Abstract:
Researchers at the Goethe University have discovered an important mechanism for superconductivity in a metallic compound containing ytterbium, rhodium and silicon. As reported by Cornelius Krellner and his colleagues in the current edition of the Science journal, the underlying concept of the quantum-critical point has long been discussed as a possible mechanism for high-temperature superconductivity. Confirming this in YbRh2Si2 after 10 years of extensive research is thus a milestone in basic research. Due to its extremely low transition temperature of two-thousandths of a degree above absolute zero, the material will have no practical relevance.
"The ytterbium atoms are essential to the material properties because they are magnetic - and for a particularly fascinating reason", Prof. Krellner from the Institute for Physics at Goethe University explains. This is because the transition to the magnetized state (phase transition) takes place at such low temperatures that temperature-related movements of the tiny atomic magnets no longer play a role. This is what distinguishes this phase transition from all other known transitions, such as the freezing of water into ice. Quantum fluctuations dominate at temperatures near absolute zero (minus 273 degrees). These are so strong that nature attempts to take on alternative ordered fundamental states.
Superconductivity is a potential collective state which can arise at a quantum-critical point. "After we discovered it in YbRh2Si2, we were able to show that unconventional superconductivity is a general mechanism at a quantum-critical point", Krellner explains. The elaborate low-temperature measurements were taken in collaboration with the Walther-Meißner Institute for Low Temperature Research in Garching.
Cornelius Krellner studied YbRh2Si2 10 years ago while working towards his doctorate at the Max-Planck Institute for Chemical Physics of Solids. At the time, he was growing single crystals of the compound. The quality and size of these was essential to measuring the material properties in the first place. "We were all very enthusiastic when we saw the first indications of superconductivity, and I put all my efforts into growing even better and larger single crystals", remembers Krellner, who has headed the Crystal and Materials Laboratory at Goethe University since 2012. That it took so long after that to produce the final proof of unconventional superconductivity was due to the fact that the measurements are extremely time-consuming. Furthermore, it was necessary to study the superconductivity with different techniques in order to show that it really was a case of unconventional superconductivity.
Krellner and his team use a special method to grow the crystals. It prevents ytterbium from vaporizing at the required high temperatures of 1500 degrees Celsius. "We are currently the only ones in Europe with the capability of producing single crystals of YbRh2Si2" Krellner is proud to tell us. Over the next few years, he and his colleagues want to study the magnetic order above the superconducting range. Physicists will also study the superconductivity itself in greater detail over the next few years - a task which will be enabled by the pure and large single crystals from AG Krellner.
####
For more information, please click here
Contacts:
Cornelius Krellner
Copyright © Goethe University Frankfurt
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
Quantum Physics
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Superconductivity
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||