Home > Press > LC.300 Series Nanopositioning Controller from nPoint
![]() |
Abstract:
The LC.300 Series Piezo Controller is the latest addition to nPoint’s nanopositioning electronics. This new closed-loop controller is designed to address OEM applications that benefit from speed, precision, and flexibility but do not require the advanced feature set of the LC.400 Piezo Controller.
LC.300 Digital Controllers are designed to operate closed-loop, flexure-guided nanopositioners, with smooth linear motion and nanometer precision. nPControl Basic Software offers the ability to easily change PID control parameters and apply notch filters via Windows-based GUI. Controllers are compatible with capacitive or strain gauge sensing technology for closed-loop operation. The LC.300 was designed with a small footprint for simple integration into OEM environments. When combined with nPoint’s line of nanopositioning stages, the LC.300’s 20-bit resolution provides sub-nanometer positioning capabilities. As the latest addition to nPoint’s nanopositioning electronics, the LC.300 Series can be used in a variety of industries as an OEM system component.
Application examples include: life science, microscopy, semiconductor, data storage, optics, materials science, and photonics packaging.
####
About nPoint Inc.
nPoint focuses on developing solutions for high specification nanopositioning needs. Located in Middleton, WI nPoint is an industry leader in precision nanopositioning in the global market. nPoint’s piezo driven flexure stages, piezo drivers, and closed-loop DSP controllers are used in research, aerospace, semiconductor manufacturing, optics, and automotive industries.
For more information, please click here
Contacts:
Justin Brink
Copyright © nPoint Inc.
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Memory Technology
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Automotive/Transportation
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Photonics/Optics/Lasers
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||