Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles used to prevent inflammatory acne through slow-released nitric oxide

Adam Friedman, M.D.
Adam Friedman, M.D.

Abstract:
GW researcher and dermatologist, Adam Friedman, M.D., and colleagues, find that the release of nitric oxide over time may be a new way to treat and prevent acne through nanotechnology. This research, published in the Journal of Investigative Dermatology, identified that the nanoparticles were effective at killing Proprionobacterium acnes, the gram positive bacteria associated with acne, and even more importantly, they inhibited the damaging inflammation that result in the large, painful lesions associated with inflammatory acne.

Nanoparticles used to prevent inflammatory acne through slow-released nitric oxide

Washington, DC | Posted on July 16th, 2015

"Our understanding of acne has changed dramatically in the last 15-20 years," said Friedman, associate professor of dermatology at the GW School of Medicine and Health Sciences and co-author of the study. "Inflammation is really the driving force behind all types of acne. In this paper, we provide an effective a way to kill the bacterium that serves as a stimulus for Acne without using an antibiotic, and demonstrate the means by which nitric oxide inhibits newly recognized pathways central to the formation of a pimple, present in the skin even before you can see the acne."

While the body makes nitric oxide for many purposes, its impact, such as anti-inflammatory effects, are short lived. Because nitric oxide interacts with its environment so quickly and is active for only a few seconds, it was crucial to find a way to release nitric oxide over time to be used effectively. Utilizing an established nanotechnology capable of generating and releasing nitric oxide over time, Friedman and his research team at the Albert Einstein College of Medicine and University of California Los Angeles explored the mechanisms by which the nanoparticles could be a new way to tackle Acne, one of the most common dermatologic diseases affecting between 40-50 million people each year.

Acne develops due to an inappropriate immune system response to various factors, including bacteria on the skin such as P. acnes. The focus of this study was on a new pathway that was recently highlighted by the team at UCLA, involving what is known as an inflammasome, responsible for the activation of the inflammatory process in Acne.

"Many current medications focus only on one or two part of this process," said Friedman. "By killing the bacterium and blocking multiple components of the inflammasome, this approach may lead to better treatment options for acne sufferers, and possibly treatments for other inflammatory skin conditions."

####

About George Washington University Medical Center
Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

For more information, please click here

Contacts:
Anne Banner

202-994-2261

Copyright © George Washington University Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Nitric oxide releasing nanoparticles prevent propionibacterium acnes induced inflammation by both clearing the organism and inhibiting microbial stimulation of the innate immune response," is available at:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project