Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breakthrough nanoscale IR spectroscopy platform that combines AFM-IR and sSNOM

Abstract:
New product from Anasys Instruments provides both robust nanoscale IR absorption spectroscopy via AFM-IR and sub-20nm complex optical property imaging via sSNOM.

Breakthrough nanoscale IR spectroscopy platform that combines AFM-IR and sSNOM

Santa Barbara, CA | Posted on July 14th, 2015

Anasys Instruments, the world leader in nanoscale IR spectroscopy, announces the nanoIR2-s™ nanoscale spectroscopy and imaging platform. The nanoIR2-s™ brings together two powerful techniques, AFM-IR and s-SNOM (scattering scanning near field optical microscopy). The AFM-IR is a proprietary Anasys technique that measures nanoscale IR absorption by using the AFM probe tip as a detector of IR absorption. Anasys Instruments’ AFM-IR technology is now routinely applied by industrial and academic researchers to study advanced polymers and life science specimens through direct IR absorption spectra at a spatial resolution unconstrained by optical diffraction limits of conventional infrared and Raman microscopy. Applications include polymer interface chemistry, subcellular imaging, protein secondary structure of single fibrils, and many more.

The s-SNOM is a well-established technique in the AFM field for sub-20nm optical imaging by studying the scattered light from a region of the sample under the AFM probe. The s-SNOM technique has recently been extended to the infrared and can provide complex optical property imaging of diverse materials, especially inorganics, 2D materials, micro/nanoelectronic devices, nano-antennas, and plasmonic structures.

Anasys CTO, Dr. Craig Prater notes, “We are very proud to introduce the nanoIR2-s to expand the range of measurements and materials that can be supported by our instruments. Our customers demand the ability to measure IR absorption spectra with high accuracy and correlatable to FTIR spectra, as provided by our AFM-IR technique. Additionally, they want to measure a broad range of materials, organics and inorganics, and to be able to choose the technique that works best for their material, without compromise.”

With several patented features, our nanoIR2-s delivers research productivity by providing adaptive beam steering, dynamic power control, and suppression of unwanted background to get fast, repeatable results. Our unique nano-thermal and nano-mechanical analysis capabilities, together with a robust AFM, make the nanoIR2s a multi-functional material property measurement platform. To view the details or download a brochure, visit www.anasysinstruments.com/nanoIR2s.

####

For more information, please click here

Contacts:
Roshan Shetty
Phone: 805-730-3310

Copyright © Anasys Instruments Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project