Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pinholes be gone!

Atomic force microscopy (AFM) images show pinholes in the spiro-OMeTAD layer prepared by spin-coating (left) versus no pinholes when prepared by vacuum evaporation (right).
CREDIT: OIST
Atomic force microscopy (AFM) images show pinholes in the spiro-OMeTAD layer prepared by spin-coating (left) versus no pinholes when prepared by vacuum evaporation (right).

CREDIT: OIST

Abstract:
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have eliminated problematic pinholes in the top layer of next-generation solar cells in development. At the same time, they have significantly improved the lifetime of the solar cell and made it thinner. The findings were recently published in Scientific Reports.

Pinholes be gone!

Okinawa, Japan | Posted on June 3rd, 2015

The pinholes, identified by OIST's Energy Materials and Surface Sciences Unit led by Prof. Yabing Qi, were described in the Chemistry of Materials earlier this year. The pinholes in the top layer of the solar cell, known as the hole transport layer, were identified as a key cause for the quick degradation of perovskite solar cells. Researchers around the world are investigating the potential of perovskite, a manmade organic-inorganic hybrid material, as an alternative to silicon-based solar cells.

"Pinholes are a very critical problem because it's a pathway for moisture and oxygen to attack the perovskite material, which is the active layer converting sunlight to energy," said Min-Cherl Jung, a staff scientist at OIST and first author of this work. "Without pinholes in the hole transport layer, the perovskite is protected and the lifetime improves."

The researchers eliminated the pinholes by using a different method to create the top layer of the solar cell, which is made of a material called spiro-OMeTAD. Instead of dissolving spiro-OMeTAD powder in a solution and then spin-coating it onto perovskite, they evaporated the powder in a vacuum chamber and the spiro-OMeTAD molecules deposited onto the solar cell.

To create this layer, a solar cell is positioned upside down on the ceiling of a vacuum chamber. As the spiro-OMeTAD is heated up, it evaporates and the gas molecules that stick to the perovskite, creating an even layer -- much like when snow blankets the ground. Essentially, the spiro-OMeTAD molecules are snowing, but up rather than down.

"Vacuum evaporation enables us to much more precisely control the deposition rate and thus the thickness of this layer," Jung said. "We were able to reduce the thickness of the solar cell from over 200 nanometers to 70 nanometers."

This method also enabled the team to precisely control how and when they added other ingredients to the mix to make it more conductive. The result again was a significant improvement - they could finely tune the energy level of that layer to closely match the layer beneath it, which makes the movement of "holes" carrying positive charges around the solar cell circuit much easier.

"A very small difference between the top layer and perovskite material means maybe we get greater energy efficiency," Jung said.

The evaporation method also resulted in a much longer-lasting solar cell. Before, the cells would lose the ability to efficiently convert sunlight into electricity after a couple of days. Now, their efficiency remains high for more than 35 days.

While cheaper than conventional silicon-based solar cells, evaporation-based perovskite solar cells are more expensive than spin-coated cells. The team is now working to determine how to strike a balance between cost and efficiency, and hopefully find a way to use solution processing without creating pinholes.

####

For more information, please click here

Contacts:
Kaoru Natori

81-989-662-389

For press inquires:

Copyright © Okinawa Institute of Science and Technology Graduate Univers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project