Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

This is an artist's concept of cell hemifusion.
CREDIT: Peter Allen
This is an artist's concept of cell hemifusion.

CREDIT: Peter Allen

Abstract:
Cells are biological wonders. Throughout billions of years of existence on Earth, these tiny units of life have evolved to collaborate at the smallest levels in promoting, preserving and protecting the organism they comprise. Among these functions is the transport of lipids and other biomacromolecules between cells via membrane adhesion and fusion -- processes that occur in many biological functions, including waste transport, egg fertilization and digestion.

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion

Santa Barbara, CA | Posted on May 27th, 2015

At the University of California, Santa Barbara, chemical engineers have developed a way to directly observe both the forces present and the behavior that occurs during cell hemifusion, a process by which only the outer layers of the lipid bilayer of cell membranes merge. While many different techniques have been used to observe membrane hemifusion, simultaneous measurements of membrane thickness and interaction forces present a greater challenge, according to Dong Woog Lee, lead author of a paper that appears in the journal Nature Communications.

'It is hard to simultaneously image hemifusion and measure membrane thickness and interaction forces due to the technical limitations,' he said.

However, by combining the capabilities of the Surface Forces Apparatus (SFA) -- a device that can measure the tiny forces generated by the interaction of two surfaces at the sub-nano scale -- and simultaneous imaging using a fluorescence microscope, the researchers were able to see in real time how the cell membranes rearrange in order to connect and open a fusion conduit between them. The SFA was developed in Professor Jacob Israelachvili's Interfacial Sciences Lab at UCSB. Israelachvili is a faculty member in the Department of Chemical Engineering at UCSB.

To capture real time data on the behavior of cell membranes during hemifusion, the researchers pressed together two supported lipid bilayers on the opposing surfaces of the SFA. These bilayers consisted of lipid domains -- collections of lipids that in non-fusion circumstances are organized in more or less regularly occurring or mixed arrangements within the cell membrane.

'We monitored these lipid domains to see how they reorganize and relocate during hemifusion,' said Lee. The SFA measured the forces and distances between the two membrane surfaces as they were pushed together, visualized at the Ångstrom (one-tenth of a nanometer) level. Meanwhile, fluorescent imaging made it possible to see the action as the more ordered-phase (more solid) domains reorganized and allowed the more disordered-phase (more fluid) domains to concentrate at the point of contact.

'This is the first time observing fluorescent images during a hemifusion process simultaneously with how the combined thickness of the two bilayers evolve to form a single layer,' said Lee. This rearrangement of the domains, he added, lowers the amount of energy needed during the many processes that require membrane fusion. At higher pressures, according to the study, the extra energy activates faster hemifusion of the lipid layers.

Lipid domains have been seen in many biological cell membranes, and have been linked to various diseases such as multiple sclerosis, Alzheimer's disease and lung diseases. According to the researchers, this novel device could be used to diagnose, provide a marker for, or study dynamic transformations in situations involving lipid domains in pathological membranes. The fundamental insights provided by this device could also prove useful for other materials in which dynamic changes occur between membranes, including surfactant monolayers and bilayers, biomolecules, colloidal particles, surfactant-coated nanoparticles and smart materials.

####

For more information, please click here

Contacts:
Sonia Fernandez

805-893-4765

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project