Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Record high sensitive Graphene Hall sensors

Abstract:
In the era of modern world, numerous types of magnetic field sensors are being used in different applications. The magnetic field sensors market has gained ample demand recently due to humongous increase in vehicle production, gaming consoles, consumer electronics industry, homeland security, healthcare, aerospace, the defense industry, etc. These magnetic field sensors are famously in demand for precise measurements of position, proximity and motion. The most popular types of magnetic field sensors are Hall Effect, magneto resistive and SQUID. According to recent market reports, the total shipment in the year 2013 for the magnetic field sensors was recorded to be 6.5 billion units. This figure is expected to reach up to 9.6 billion units by 2020. From business point of view, this market has earned $1.8 billion in 2014 and likely to reach up to $2.9 billion by year 2020. Out of these various types Hall Effect sensors are more cost effective, durable and can be handled with ease.

Record high sensitive Graphene Hall sensors

Cambridge, UK | Posted on May 21st, 2015

The most commonly used Hall Effect devices are fabricated with Silicon. The important figure of merits of Hall sensors are voltage and current - related sensitivities. These sensitivities depend on the device materials electronic properties such as charge carrier mobility and density. However, for futuristic advanced applications requires higher sensitivity Hall sensors. The other well-known materials are based on high purity III/V semiconductors like GaAs or InAs based heterostructures. Though lot of efforts has been gone in developing sensors using these materials, sensitivity values are restricted.

Now the researchers from Germany at RWTH University and AMO GmbH Aachen have fabricated ultra-high sensitive Hall Effect sensors using single layer graphene. The results are published in Applied Physics Letters. Graphene, two dimensional atomic form of carbon, is a potential candidate for highly-sensitive Hall sensors because of its very high carrier mobility at room temperature and very low carrier densities. These properties make graphene a material that can outperform all currently existing Hall sensor technologies.
Researchers have protected the graphene from ambient contaminations by encapsulating it with hexagonal boron nitride layers; another highly promising 2D insulating material. The fabricated devices show a voltage and current normalized sensitivity of up to 3 V/VT and 5700 V/AT, respectively. These values are more than one order of magnitude above the values achieved in Silicon based and a factor of two above the values achieved with the best III/V semiconductors Hall sensors in ambient conditions. In addition, these results are far better than the earlier reported graphene Hall sensors on Silicon oxide and Silicon carbide substrates.

This new sensitivity level will enable devices with higher precision, lower energy consumption with smaller dimensions. This work will show new light for using graphene in more commercial applications, as Hall sensors are integral part of many household appliances. The research work is supported by the EU Graphene Flagship project (Contract No. NECT-ICT-604391) and the ERC (GA-Nr. 280140).

Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Jan Dauber, Abhay A. Sagade, Martin Oellers, Kenji Watanabe, Takashi Taniguchi, Daniel Neumaier, and Christoph Stampfer. App. Phys. Lett. 106, 193501 (2015); doi: 10.1063/1.4919897.

####

For more information, please click here

Contacts:
Dr. Abhay Sagade
Dept. of Engineering,
University of Cambridge, UK.

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project