Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future

This image shows Hamlin and Webb at Washington State University.
CREDIT: Rebecca Phillips
This image shows Hamlin and Webb at Washington State University.

CREDIT: Rebecca Phillips

Abstract:
Washington State University mathematicians have designed an encryption code capable of fending off the phenomenal hacking power of a quantum computer.

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future

Pullman, WA | Posted on March 26th, 2015

Using high-level number theory and cryptography, the researchers reworked an infamous old cipher called the knapsack code to create an online security system better prepared for future demands.

The findings were recently published in the journal The Fibonacci Quarterly.

Quantum computers are near

Quantum computers operate on the subatomic level and theoretically provide processing power that is millions, if not billions of times faster than silicon-based computers. Several companies are in the race to develop quantum computers including Google.

Internet security is no match for a quantum computer, said Nathan Hamlin, instructor and director of the WSU Math Learning Center. That could spell future trouble for online transactions ranging from buying a book on Amazon to simply sending an email.

Hamlin said quantum computers would have no trouble breaking present security codes, which rely on public key encryption to protect the exchanges.

In a nutshell, public key code uses one public "key" for encryption and a second private "key" for decoding. The system is based on the factoring of impossibly large numbers and, so far, has done a good job keeping computers safe from hackers.

Quantum computers, however, can factor these large numbers very quickly, Hamlin said. But problems like the knapsack code slow them down.

Fortunately, many of the large data breaches in recent years are the result of employee carelessness or bribes and not of cracking the public key encryption code, he said.

A new public key code

Looking to protect future online information, Hamlin and retired mathematics professor William Webb turned to the long-abandoned knapsack code. To bring it up to quantum level - and possibly use it as a new type of public key encryption - the researchers first engineered new numbering systems for the code.

"We used alternate ways of representing numbers," said Hamlin.

In effect, they created new digital systems with much greater complexity than society's day-to-day decimal and binary systems.

"By using very complicated number strings, we produced a new version of the knapsack code that can't be broken by the usual cyber attack methods," said Webb.

As a result, Hamlin and Webb believe the redesigned knapsack code could offer a viable alternative for public key encryption with quantum computing.

Knapsack code

The knapsack problem is a theoretical puzzle dating back to at least 1897 and is very difficult to solve in its most general form.

"Basically, it asks if you have one big number (the knapsack) and lots of small numbers (objects), what is the subset of small numbers (or objects) that will perfectly fill the knapsack? The concept was used to create a code called the knapsack code," explained Webb.

"The knapsack code was originally suggested as a tool for public key encryption in the 1970s, but it was broken by two different methods and people lost interest in it," he said.

Webb's idea to bring it out of storage was at first an intellectual exercise.

"Knapsack is a simple, elegant code but it was broken," said Webb. "We wondered if it could be fixed and redesigned to be secure. The challenge was intriguing."

Hamlin said they made corrections at the fundamental level of the code, which repaired many of its weak spots. This let it block a greater array of cyber attacks, including those using basis reduction, one of the decoding methods used to break the original knapsack code, he said.

"Basis reduction is a big hammer to use against this code and, after testing, we think it's secure against this type of attack and would offer an alternative code for quantum computing," Hamlin said.

Webb said although it still needs outside testing, the remodeled knapsack code holds promise for making future online computer transactions considerably more secure.

"Essentially any time you want to send secure messages over the Internet, you need a public key code. This is another candidate for a useful code," he said.

###

WSU Associate Professor Bala Krishnamoorthy also took part in the research.

####

For more information, please click here

Contacts:
Nathan Hamlin

509-335-0844

Copyright © Washington State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project