Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superfast computers a step closer as a silicon chip's quantum capabilities are improved

Abstract:
The team demonstrated a quantum on/off switching time of about a millionth of a millionth of a second - the fastest-ever quantum switch to be achieved with silicon and over a thousand times faster than previous attempts.

Superfast computers a step closer as a silicon chip's quantum capabilities are improved

Guildford, UK | Posted on March 20th, 2015

"Quantum computing exploits the fact that, according to quantum mechanics atoms can exist in two states at once, being both excited and unexcited at the same time. This is known as a superposition state, and is most famously illustrated by Schrödinger's quantum cat which is simultaneously dead and alive" said Dr. Ellis Bowyer, one of the Surrey researchers who made the laser measurements, He added "This superposition of orbital states is very delicate, but we discovered that silicon provides an amazingly clean environment for the phosphorus atoms trapped inside where our quantum information is being stored. We put the atoms into a superposition state with a very short (a few trillionths of seconds) laser pulse from the FELIX laser facility, and then, we showed we can create a new superposition which depends on the exact time at which a second laser pulse arrives. We found that the superposition state even survives when electrons are flying around the trapped atom while current was flowing through the chip, and even more strangely, the current itself depends on the superposition state".

The team has recently been awarded further funding from the UK EPSRC (Engineering and Physical Sciences Research Council) to investigate how to connect many of these quantum objects to each other, creating the bigger building blocks needed for quantum computers. This next phase of research could enable the creation of fast quantum silicon chips, and other kinds of devices such as super-accurate clocks and ultra-sensitive bio-medical sensors.

"Quantum superpositions and the resulting quantum technologies are only just beginning to make an impact, but we believe that with new advances in silicon, it is only a matter of time before it becomes more part of the everyday. This work brings that time closer by showing that exotic quantum features, more usually demonstrated with unimaginably tiny things in university physics labs can also be seen using an ordinary voltmeter," said Dr Thornton Greenland of UCL. "What is exciting is that we can see these exotic quantum phenomena in that most common material, silicon, using a measurement as simple as that of the electrical resistance" Thus the time is drawing nearer when we'll be able to take advantage of make a computer that does a tremendous number of calculations simultaneously, and that provides unprecedentedly secure computing, impenetrable to hackers."

####

For more information, please click here

Contacts:
Amy Sutton

01-483-686-141

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project