Home > Press > Production of Special Nanocomposite in Iran with Application in Railways
Abstract:
Iranian researchers from Sharif University of Technology succeeded in the production of a nanocomposite with appropriate mechanical properties and resistance against various environmental conditions.
The results of the research can be used in the production of insulators which have applications in railways.
The main objective of the research was to replace the commonly-used pieces in railways transportation, specially railways insulator with phenolic/fiberglass nanocomposite. The insulator should have high environmental resistance because it is imposed to various climate conditions during the year.
According to the researchers, the proposed pieces can be used in the body and top of spaceships and spacecraft, which require high strength at harsh environmental conditions, as well as in railways as a composite insulator. The reason is high resistance of phenolic resin against temperature and pressure.
Observations of the researchers showed that the use of clay nanoparticle in the structure of phenolic resin significantly increases the mechanical properties even at low compositions, to the extent that using only 2.5% of the weight of both types of clays in the composite structure results in 45% increase in the value of elasticity module and also an increase in tensile and shear strengths and impact resistance. On the other hand, the replacement of linen fibers that are widely used in railways with fiberglass results in an increase in the strength and environmental resistance.
Results of the research have been published in Composites Part A: Applied Science and Manufacturing, vol. 63, issue 1, 2014, pp. 149-158.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Automotive/Transportation
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Aerospace/Space
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||