Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fraud-proof credit card possible because of quantum physics

Abstract:
Cards, such as identification cards and credit cards, which are impossible to hack. With a system based on quantum physics this will soon be possible. Researchers from the UT research institute MESA+ and the Eindhoven University of Technology (TU/e) have together developed a method with which you can authenticate physical objects which are impossible to copy. The research has been published today in The Optical Society's (OSA) new high-impact journal Optica (and is shown on the cover).

Fraud-proof credit card possible because of quantum physics

Enschede, Netherlands | Posted on December 16th, 2014

Technologists are fighting a continuous battle with people with malicious intent to secure bank cards, credit cards, identification cards and locks of, for example, cars. In bank cards the magnetic stripes have been replaced with a chip with a small microprocessor and a secret code, but the chip can still be copied and hackers have recently managed to discover the accompanying code. Car thieves are currently also already able to steal cars by turning the digital door lock to suit their purpose. To achieve this they don't use a copy of the key but are, armed with just a laptop, able to imitate the 'question-answer' game that the lock plays with the key.

Researchers of the University of Twente have together with the Eindhoven University of Technology developed a method which makes it impossible to hack cards or imitate their properties, even if those with malicious intent have all the necessary information at their disposal, such as the complete structure of the card. The method uses the quantum-physical fact that light particles (photons) can be in multiple locations at the same time. This fact is known from the famous double-slit experiment that forms the basis of quantum physics.

White paint
A card is equipped with a paper-thin layer of dry white paint which contains millions of nanoparticles. If you send a light particle into the paint it will, like in a pinball machine, 'bounce' between the nanoparticles until it escapes. If a bank sends a complicated pattern of light dots that's unique for each transaction (a 'question') into the paint, you will subsequently be able to detect a new unique pattern of escaping light particles (the 'answer') at the surface. The bank will only approve of the card if this pattern of dots is correct.

Quantum physics against digital attacks
If the bank uses 'normal' light in this with a lot more photons than just the light dots, an attacker can measure the entering dot pattern and return the correct dot pattern with, for example, a projector, so that the bank will not be able to see a difference between the real card and the signal of the attacker. The clever solution of the researchers springs from quantum physics. Because a photon can be in multiple locations at the same time it's possible to send a pattern into the paint that consists of fewer photons than light dots. Because there aren't enough photons in that case, an attacker can no longer measure the entire pattern, and will therefore not know which question the bank is asking. He will therefore have no idea which answer to send back, while the bank could check the answer with even just one photon.

Quantum, but not difficult
According to Prof. Dr Pepijn Pinkse, who leads the research, it is a unique way to provide security suitable for, for instance, (government) buildings, bank cards, credit cards, identification cards and cars. "The best thing about our method, which we've called Quantum Secure Authentication (QSA), is that secrets aren't necessary. So they can't be filched either." QSA can be employed in numerous situations relatively easily, as it uses simple and cheap technology which is already available. The layer of paint is cheap and easy to apply and the read out equipment consists of a simple laser (as in CD players), a simple image sensor and an image-forming chip as is present in every modern projector.

Research
The research has been performed by Sebastianus Goorden, Marcel Horstmann, Allard Mosk and Pepijn Pinkse of the MESA+ Institute for Nanotechnology in the Complex Photonic Systems group of the University of Twente, in collaboration with Boris Škorić of the Eindhoven University of Technology. This research has been made possible by funding from the Foundation for Fundamental Research on Matter (FOM), the STW Technology Foundation, the European Union and the Netherlands Organisation for Scientific Research (NWO).

####

For more information, please click here

Contacts:
Joost Bruysters
University of Twente
+31 (0) 6 1048 8228

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project