Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymeric Drug Carrier Produced in Iran for Target Delivery System

Abstract:
In this research, biodegradable polymers have been used in the production of nanocarrier, which enable the release of drug by controlling changes in temperature. The production and characterization of the nanocarrier is at the laboratorial stage at the moment.

Polymeric Drug Carrier Produced in Iran for Target Delivery System

Tehran, Iran | Posted on December 9th, 2014

Modified hydrophobic polysaccharides have recently attracted the attention of many researchers. These materials are important due to their biocompatibility, biodegradability, temperature responsiveness, ability to form nanoparticles and encapsulation of hydrophobic drugs. In this project, the researchers tried to produce and characterize a target delivery system by using anticancer nanocarrier made of these materials.

According to Dr. Ma'soumeh Baqeri, one of the researchers, hydroxypropyl cellulose (HPC) was chosen in this research as a natural, biocompatible and biodegradable polymer, and the new bi-polymer was produced based on it. To this end, the connection of cholesterol and polyethylene glycol to HPC was used. After the final modification by connection of biotin to the nanocarrier, it was used to carry paclitaxel anticancer drug to cancerous cells in a target delivery manner.

Toxicity study of the produced missiles showed that the carrier is not toxic for natural cells. Results obtained from cellular sorption showed that the presence of biotin decreases the amount of living cancerous cells due to the increase in taking of drug carrier by cancerous cells.

Results of the research have been published in Journal of Polymer Research, vol. 21, issue 567, 2014, pp. 1-15.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project