Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution

This work has been highlighted at the Frontispiece section of the journal Small credits: E. Vazquez, CIQUS
This work has been highlighted at the Frontispiece section of the journal Small

credits: E. Vazquez, CIQUS

Abstract:
As they have published in the prestigious journal Small, this is a method of identification of nucleic acids based on the generation pattern (bar code) inspired by our olfactory system. The differences in trans-membrane transport can be used to generate fluorescence patterns. That allows the differentiation of molecules as DNA or RNA by means of pattern generation and/or recognition protocols.

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution

Santiago de Compostela, Spain | Posted on September 18th, 2014

Pattern recognition is the mechanism that operates in mammal's olfactory reception. In effect, humans can detect thousands (or millions) of odorants with only hundreds of olfactory receptors. Incompatible with one to one recognition, the olfactory sensing system generates response patterns that configure a unique aroma sensation in the brain. In other words, in response to the detection of an odorant molecule the olfactory receptors "generate" a pattern that is recognized in the brain. This is called a pattern generation/recognition sensor.

Thus, this methodology has an enormous power for the amplification of the differences in very similar molecules. So it has inspired researchers to develop their own sensing system based for example in host/guest chemistry.

However, in this work researchers have employed the transport of DNA molecules across lipid membranes (as the cell membranes) to generate different transport patterns. They hypothesized that if a long DNA is transported fast and at low concentration, and a short DNA is transported slowly and at high concentration, we could use these different transport behaviours to detect and differentiate DNAs molecules.

The results of this study have shown that the differences amplification observed during transport events allowed the differentiation of DNAs with an outstanding single nucleotide resolution. These findings are of interest because they might serve as a blueprint for the fabrication of many other pattern-based sensing systems in any other polymer of biological relevance (DNA, RNA...), a field that continues to be a major challenge in biochemistry.

This work has been fully developed at CIQUS by the PhD student Juan M. Priegue in collaboration with the postdoctoral researcher Javier Montenegro, under the direction of Professor Juan R. Granja. The journal Small has highlighted this work at its Frontispiece section.

Technical note

The detection and identification of polymers of biological interest -such as DNA or RNA- continues to be a major challenge in biochemistry. The transport of polyanions (i.e. DNA) across the membrane of fluorophore-loaded liposomes can be activated by small cationic amphiphilic molecules (activators). The corresponding fluorescent signals obtained in this type of transport experiments are different, depending on the molecules employed to activate DNA transport.
Therefore, these differences in transport can be used to generate fluorescence patterns that turn out to be distinctive for similar small non-ionic activators. Thus, this protocol allows the differentiation of similar analytes by means of pattern generation/recognition protocols.
In this new work researchers report that the same methodology can be also applied to generate unique dose-response patterns for different anionic polymers (DNA, RNA) of biological relevance. For that purpose, they have "de novo" designed and developed a synthetic strategy for the preparation of dynamic oximes-amphiphiles for the DNA transport activation across lipid bilayers.
The fluorescent fingerprints (dose-response plots) generated in vesicle transport experiments allowed the differentiation of a collection of biopolymers with excellent reproducibility and precision, up to single nucleotide resolution of short single stranded oligonuclotides.

####

For more information, please click here

Contacts:
Juan Granja
+34 8818 15746

Copyright © CiQUS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Research center: CIQUS – USC:

Research group: Peptide Nanotubes

Research paper:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project