Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery

Abstract:
Iranian researchers from Tarbiat Modarres University changed the liposome production process and increased the amount of genes entrapped in the structure of these nanocarriers.

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery

Tehran, Iran | Posted on July 17th, 2014

The non-virus nanocarriers have neutral structure and very high stability and they protect entrapped genes against degrading enzymes.

In this research, some changes were made in the synthesis of liposomes and nanocarriers were produced that can entrap DNA molecules with very high efficiency (98%) in their absolutely neutral structure. The results have so far been reported only for cationic liposomes that are highly toxic and can only be used in-vivo.

The nanostructure is very stable, to the extent that no release of DNA has been observed from it after six months. DNA is trapped in aqueous environment inside the liposome. Therefore, degrading enzymes are not able to degrade DNA molecule, and as a result, DNA has very high stability inside the structure.

Among other advantages of the designed nanocarrier, mention can be made of its very high ability in gene delivery to bacterium cell. Therefore, it can be used in the treatment of infections caused by bacteria, which are resistant to medications. The nanostructure can also be used as an appropriate carrier to delivery medications in the treatment of human diseases. The research team is currently carrying out studies on gene delivery to bacterium cells through this system.

Taking into account the obtained results, the researchers are hopeful that liposomes derived from cellular membrane will have important role in drug and gene delivery in the near future; therefore, they will take the place of toxic cationic carriers that are currently used.

Results of the research have been published in Molecular Biotechnology, vol. 55, issue 2, October 2013, pp. 120-130.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project