Home > Press > Acrylamide exposure impairs blood-cerebrospinal fluid barrier function
Abstract:
The blood-brain barrier prevents xenobiotics from entering the central nervous system. Growing evidence indicates that neurotoxins, such as tributyltin, manganese and nanoparticles, may disrupt the function of the blood-brain and blood-cerebrospinal fluid (CSF) barriers.
Previous studies show that chronic acrylamide exposure leads to central and peripheral neuropathy. However, very few studies have focused on the effects of acrylamide exposure on these barriers. Prof. Yanshu Zhang and co-workers from Hebei United University in China found that acrylamide exposure damages the blood-cerebrospinal fluid barrier and impairs secretory and transport functions. These changes may underlie acrylamide-induced neurotoxicity. The research achievements have been published in the Neural Regeneration Research (Vol. 9, No. 5, 2014).
###
Article: " Acrylamide exposure impairs blood-cerebrospinal fuid barrier function," by Xue Yao1, Licheng Yan1, Lin Yao2, Weijun Guan3, Fanxu Zeng1, Fuyuan Cao2, Yanshu Zhang1 (1 College of Public Health, Hebei United University, Tangshan, Hebei Province, China; 2 Experimental Animal Center, Hebei United University, Tangshan, Hebei Province, China; 3 Key Laboratory of Hebei Health and Safety on Coal Industry, Hebei United University, Tangshan, Hebei Province, China)
Yao X, Yan LC, Yao L, Guan WJ, Zeng FX, Cao FY, Zhang YS. Acrylamide exposure impairs blood-cerebrospinal fluid barrier function. Neural Regen Res. 2014;9(5):555-560
####
For more information, please click here
Contacts:
Meng Zhao
86-138-049-98773
Copyright © Neural Regeneration Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||