Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UH researchers find definitive evidence of how zeolites grow: A breakthrough technique allowed them to track crystal growth in real time

This is a photograph of the high temperature liquid cell attached to the atomic force microscope (MFP-3D-SA, Asylum Research, Santa Barbara, CA). The cell is equipped with inlet/outlet ports for liquid injection and a heating element that regulates temperatures as high as 300 C.

Credit: University of Houston
This is a photograph of the high temperature liquid cell attached to the atomic force microscope (MFP-3D-SA, Asylum Research, Santa Barbara, CA). The cell is equipped with inlet/outlet ports for liquid injection and a heating element that regulates temperatures as high as 300 C.

Credit: University of Houston

Abstract:
Researchers have found the first definitive evidence of how silicalite-1 (MFI type) zeolites grow, showing that growth is a concerted process involving both the attachment of nanoparticles and the addition of molecules.

UH researchers find definitive evidence of how zeolites grow: A breakthrough technique allowed them to track crystal growth in real time

Houston, TX | Posted on May 15th, 2014

Both processes appear to happen simultaneously, said Jeffrey Rimer, an engineering professor at the University of Houston and lead author of a paper published Thursday in the journal Science.

He said a second component to the research could have even more lasting impact. He and researcher Alexandra I. Lupulescu used a new technique allowing them to view zeolite surface growth in real time, a breakthrough Rimer said can be applied to other types of materials, as well.

Typically, researchers examine zeolite growth by removing crystals from the natural synthesis environment and analyzing changes in their physical properties, said Rimer, Ernest J. and Barbara M. Henley Assistant Professor of Chemical and Biomolecular Engineering at UH. That has made understanding the fundamental mechanism of zeolite growth more challenging.

Zeolites occur naturally but can also be manufactured. This research involved silicalite-1, a synthetic, aluminum-free zeolite that has served as a prototype in literature for studying zeolite growth.

For more than two decades, researchers have theorized that nanoparticles, which are known to be present in zeolite growth solutions, played a role in the growth, but there was no direct evidence. And while most crystals grow through classical means - the addition of atoms or molecules to the crystal - the presence and gradual consumption of nanoparticles suggested a nonclassical pathway for zeolite crystallization.

Rimer and Lupulescu found that both classical and nonclassical growth models were at work.

"We have shown that a complex set of dynamics takes place," Rimer said. "In doing so, we have revealed that there are multiple pathways in the growth mechanism, which solves a problem that has been debated for nearly 25 years."

It solves a mystery in the world of crystal engineering, but how they did it may have a more lasting impact. Rimer and Lupulescu, who did the project as part of her dissertation, earning her Ph.D. in chemical engineering from UH's Cullen College of Engineering in December, worked with California-based Asylum Research. They used time-resolved Atomic Force Microscopy (AFM) to record topographical images of silicalite-1 surfaces as they grew.

AFM provides near molecular-resolution 3-D images of the crystal surface. Rimer said the technology, along with software developed by Asylum Research and his lab, made it possible to study the growth in situ, or in place. While his lab works at temperatures up to 100 degrees Celsius, the instrumentation can handle temperatures as high as 300 C, making it possible to use it for a number of materials that grow in solvothermal conditions, he said.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Materials/Metamaterials/Magnetoresistance

Ultrafast lasers for materials processing August 11th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Understanding the diverse industrial applications of materials science: Materials Science A Field of Diverse Industrial Applications July 21st, 2023

A non-covalent bonding experience: Scientists discover new structures for unique hybrid materials by altering their chemical bonds July 21st, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Tools

New single-photon Raman lidar can monitor for underwater oil leaks: System could be used aboard underwater vehicles for many applications June 30th, 2023

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

Research partnerships

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project