Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Revolutionary solar cells double as lasers

This is an image of the laboratory in which the research was conducted.

Credit: Winton Programme for the Physics of Sustainability
This is an image of the laboratory in which the research was conducted.

Credit: Winton Programme for the Physics of Sustainability

Abstract:
Commercial silicon-based solar cells - such as those seen on the roofs of houses across the country - operate at about 20% efficiency for converting the Sun's rays into electrical energy. It's taken over 20 years to achieve that rate of efficiency.

Revolutionary solar cells double as lasers

Cambridge, UK | Posted on March 28th, 2014

A relatively new type of solar cell based on a perovskite material - named for scientist Lev Perovski, who first discovered materials with this structure in the Ural Mountains in the 19th century - was recently pioneered by an Oxford research team led by Professor Henry Snaith.

Perovskite solar cells, the source of huge excitement in the research community, already lie just a fraction behind commercial silicon, having reached a remarkable 17% efficiency after a mere two years of research - transforming prospects for cheap large-area solar energy generation.

Now, researchers from Professor Sir Richard Friend's group at Cambridge's Cavendish Laboratory - working with Snaith's Oxford group - have demonstrated that perovskite cells excel not just at absorbing light but also at emitting it. The new findings, recently published online in the Journal of Physical Chemistry Letters [doi 10.1021/jz500528], show that these 'wonder cells' can also produce cheap lasers.

By sandwiching a thin layer of the lead halide perovskite between two mirrors, the team produced an optically driven laser which proves these cells "show very efficient luminescence" - with up to 70% of absorbed light re-emitted.

The researchers point to the fundamental relationship, first established by Shockley and Queisser in 1961, between the generation of electrical charges following light absorption and the process of 'recombination' of these charges to emit light.

Essentially, if a material is good at converting light to electricity, then it will be good at converting electricity to light. The lasing properties in these materials raise expectations for even higher solar cell efficiencies, say the Oxbridge team, which - given that perovskite cells are about to overtake commercial cells in terms of efficiency after just two years of development - is a thrilling prospect.

"This first demonstration of lasing in these cheap solution-processed semiconductors opens up a range of new applications," said lead author Dr Felix Deschler of the Cavendish Laboratory. "Our findings demonstrate potential uses for this material in telecommunications and for light emitting devices."

Most commercial solar cell materials need expensive processing to achieve a very low level of impurities before they show good luminescence and performance. Surprisingly these new materials work well even when very simply prepared as thin films using cheap scalable solution processing.

The researchers found that upon light absorption in the perovskite two charges (electron and hole) are formed very quickly - within 1 picosecond - but then take anywhere up to a few microseconds to recombine. This is long enough for chemical defects to have ceased the light emission in most other semiconductors, such as silicon or gallium arsenide. "These long carrier lifetimes together with exceptionally high luminescence are unprecedented in such simply prepared inorganic semiconductors," said Dr Sam Stranks, co-author from the Oxford University team.

"We were surprised to find such high luminescence efficiency in such easily prepared materials. This has great implications for improvements in solar cell efficiency," said Michael Price, co-author from the group in Cambridge.

Added Snaith: "This luminescent behaviour is an excellent test for solar cell performance - poorer luminescence (as in amorphous silicon solar cells) reduces both the quantum efficiency (current collected) and also the cell voltage."

Scientists say that this new paper sets expectations for yet higher solar cell performance from this class of perovskite semiconductors. Solar cells are being scaled up for commercial deployment by the Oxford spin-out, Oxford PV Ltd. The efficient luminescence itself may lead to other exciting applications with much broader commercial prospects - a big challenge that the Oxford and Cambridge teams have identified is to construct an electrically driven laser.

####

For more information, please click here

Contacts:
Nalin Patel

44-122-376-0302

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project