Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK reports on the use of the ForceRobot system to study the dynamics of biomacromolecules at Nanjing University

Professor Yi Cao, right, and two of his students with the JPK ForceRobot® system in the Institute of Biophysics at Nanjing University.
Professor Yi Cao, right, and two of his students with the JPK ForceRobot® system in the Institute of Biophysics at Nanjing University.

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the study of how force regulates the structures and conformational dynamics of biomacromolecules using AFM-based single molecule force spectroscopy, a project of Professor Yi Cao of Nanjing University.

JPK reports on the use of the ForceRobot system to study the dynamics of biomacromolecules at Nanjing University

Berlin, Germany | Posted on March 13th, 2014

Professor Yi Cao is a member of the Institute of Biophysics located in the Physics Department of Nanjing University. The main focus of his group is to study how force regulates the structures and conformational dynamics of biomacromolecules using AFM based single molecule force spectroscopy. As force has been revealed as an important signal that regulates many biologic processes (e.g. cell adhesion, muscle contraction, membrane fusion and etc.), their study will be helpful for the understanding of the mechanism underlying these processes. In order to study the conformational change of proteins under force, there is the need for a tool that allows the accurate application of force in the pN range and then to measure the change in distance at the nm resolution. AFM is an ideal tool to fulfil this criterion and Professor Cao thinks that JPK's AFM is one of the best AFMs for biological applications.

Professor Cao first got to know ForceRobot when he was a graduate student at the University of British Columbia in Canada. He notes "I saw the very first version of ForceRobot in a SPM conference in 2007. It was so amazing to get the experiments done automatically without attendance using the ForceRobot®. I thought that this could save a lot of tedious routine manipulation time. I was impressed that the machine can be controlled remotely through internet or smartphone, which means that the operator can leave experiments running when at home or away from the laboratory. I can change many experimental parameters using the Experimentplanner™. Then, when I come back to work, thousands of curves have been collected. All you need to do is to analyze them and think about the science related to these data. Subsequently, I bought a ForceRobot when I started my own research group in Nanjing University in 2010. The software is getting better and better, especially the data analysis function."

Continuing, Professor Cao said that "before using ForceRobot, I used a custom-built AFM (commercial heads and piezos). We need to spend quite a lot of time for instrumentation and sometimes the custom-built AFM gave us more flexibility for different kinds of experiments. With the advent of the ForceRobot, we have a system which greatly improves the quantity and quality of data."

For more details about JPK's ForceRobot® system and applications for the bio & nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
http://www.jpk.com/



Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
http://www.talking-science.com/

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project