Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Aptasensors Help Detection of Cancer Protein Marker

Abstract:
Iranian chemistry researchers in association with their colleagues from Romania succeeded in the production of a highly sensitive and simple electrochemical aptasensor to detect protein marker of breast and uterus cancer.

Aptasensors Help Detection of Cancer Protein Marker

Tehran, Iran | Posted on March 9th, 2014

The aim of the research was to design and produce a highly sensitive and simple electrochemical aptasensor to measure MUC1 uterus and breast cancer protein marker by using printing sheet electrodes modified with gold nanoparticles.

Results obtained from the produced aptasensor were in full agreement and comparable with those obtained from usual methods for the measurement of MUC1 protein in clinical tests (range of 0-10 ng/mL). It confirms that electrochemical method by using aptamers stabilized on gold nanoparticles is an appropriate and simple method, which enables the measurement of MUC1 protein in human samples at very low concentrations (0.95 ng/mL) in the initial period of the disease.

Increasing the amount of stabilized aptamer chains on the surface of electrode, accessibility to target protein molecules (MUC1) after the completion of aptasensor structure and finally the production of distinguishable and individual signals are among the key issues in aptamer's design based electrochemical biosensors.

The groups are currently continuing their research on the production of electrochemical aptasensors and safety sensors modified with nanomaterials, specially with gold nanoparticles and quantum dots to detect biomarkers of other kinds of cancers and genetic diseases in real samples, including human blood serum by using at most a few microliters of blood sample.

Results of the research have been published in Communications Electrochemistry, vol. 33, May 2013, pp. 127-130.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project