Home > Press > AFM-IR used by French researchers to identify best microbes for biofuel production
![]() |
Abstract:
Anasys Instruments reports on the publication in the Journal of Physical Chemistry Letters demonstrating the use of AFM-IR used by French researchers to identify best microbes for biofuel production.
While the debate over using crops for fuel continues, scientists are now reporting a new, fast approach to develop biofuel in a way that doesn't require removing valuable farmland from the food production chain. Their work examining the fuel-producing potential of Streptomyces, a soil bacterium known for making antibiotics, appears in ACS' The Journal of Physical Chemistry Letters (see footnote). The scientists used atomic force microscopy combined with infrared spectroscopy (AFM-IR) to measure the size and map the distribution of oil inclusions inside of microorganism without staining or other special sample preparation. The same method also could help researchers identify other microbes that could be novel potential fuel sources.
The authors led by Ariane Deniset-Besseau from the Laboratoire de Chimie-Physique at the Universite Paris-Sud point out that with the rise in oil prices in recent years, the search has been on for alternative fuels. Though plants such as soy and corn have been popular, the honeymoon ended as people realized how much arable land they were taking up. So now, researchers are seeking additional sources, including bacteria. Streptomyces has become a candidate in this search. It can make and store large amounts of oils called triacylglycerols (TAGs), which are direct precursors of biodiesel. Also, manufacturers already know how to grow vast amounts of it because pharmaceutical companies use the versatile bacterium to produce life-saving antibiotics. To better understand these microbes' potential as a fuel source, Deniset-Besseu's team wanted to explore how Streptomyces stores TAGs.
They used a novel laboratory instrument that combines an atomic force microscope with a tunable infrared laser source. This instrument allows researchers to determine how and where the bacteria store TAGs. Some strains hardly accumulate any oil, whereas others stored large amounts of oil in a way that might be easy to harvest. The researchers conclude that their technique could greatly speed up the identification of other microbes that could produce large amounts of bio-oil.
Reference:
Monitoring TriAcylGlycerols Accumulation by Atomic Force Microscopy Based Infrared Spectroscopy in Streptomyces Species for Biodiesel Applications (2014). Ariane Deniset-Besseau, Craig B. Prater, Marie-Joëlle Virolle, and Alexandre Dazzi Monitoring TriAcylGlycerolsAccumulation by Atomic Force Microscopy Based Infrared Spectroscopy in Streptomyces Species for Biodiesel Applications, 5, 654-658 DOI: 10.1021/jz402393a
####
About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products that measure material properties for samples with spatially varying physical and chemical properties at the nanoscale. Anasys introduced the nano-TA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement. Most recently, Anasys is proud to introduce the second generation nanoscale IR measurement system, the nanoIR2.
For more information, please click here
Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310
www.anasysinstruments.com
Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
www.talking-science.com
Copyright © Anasys Instruments
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||