Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gold and silica nanostars imitate the two faces of the god Janus

Two examples of nanostars with one silicon oxide face (bluish) and another with golden branches (yellow).Credit: Liz-Marzán et al.
Two examples of nanostars with one silicon oxide face (bluish) and another with golden branches (yellow).

Credit: Liz-Marzán et al.

Abstract:
Researchers from the Basque centre CIC biomaGUNE and the University of Antwerp (Belgium) have designed nanoparticles with one half formed of gold branches and the other of silicon oxide. They are a kind of Janus particle, so-called in honour of the Roman god with two faces, which could be used in phototherapy in the future to treat tumours.

Gold and silica nanostars imitate the two faces of the god Janus

Madrid, Spain | Posted on February 12th, 2014

In Roman mythology, Janus was the god of gates, doors, beginnings and transitions between the past and the future. In fact, the first month of the year, January (from the Latin, ianuarĭus), bears his name. This deity was characterised by his profile of two faces, something which has inspired scientists, when naming their chemical designs with two clearly distinct components.

Now, a team of researchers from CIC biomaGUNE in San Sebastian, together with colleagues from the Belgian University of Antwerp, have created Janus particles of nanometric size. They are constituted by silicon oxide on one side and gold points on the other.

As Luis Liz-Marzán, the main author of this study published in the journal ‘Chemical Communications', explains to SINC: "These nanostars have optical and electronic properties determined largely by their small dimensions and their morphology."

The researchers have come up with techniques to mould the sharp gold points from nanoparticles of this metal, such that very intense electric fields can be generated on the gold points using light.

"Our research is basic science, but these fields are used in processes of ultrasensitive detection to identify negligible quantities of molecules that can be absorbed on the gold face as contaminants or biomarkers that indicate the presence of a disease," says Liz-Marzán.

Another possible application is phototherapy, the object of which is to kill malignant cells using heat, in this case induced by lighting the gold points. The oxide face would be used to join the nanostars to specific biological receptors that would take them to the damaged cells and only to these, so that the metal part can exercise its therapeutic or diagnostic function.

These nanoparticles are produced in various stages. First, golden nanospheres are produced by the chemical reduction of a salt from the precious metal. Then, two different organic compounds are added on opposite sides of the particle in order to give them distinct affinity due to the silicon oxide. In this way, the oxide covers only one part and the other remains uncovered in order to let the golden points grow.

Full bibliographic information

Denis Rodríguez-Fernández, Thomas Altantzis, Hamed Heidari, Sara Bals, Luis M. Liz-Marzán. "A protecting group approach toward synthesis of Au-silica Janus nanostars". Chemical Communications 50: 79-81, 2014. DOI: 10.1039/C3CC47531J.

####

About Plataforma SINC
The Scientific Information and News Service (Servicio de Información y Noticias Científicas - SINC), is a new public and nationwide multimedia scientific news platform supported by an open source software tool based in Spain. The primary objective behind the creation of SINC is to increase the number of high quality scientific news items in the media, as a means of bringing the public closer to science.

For more information, please click here

Contacts:
Para contactar con el investigador:
Luis M. Liz-Marzán
CIC biomaGUNE
Telf.: +34 943 005 300


Enrique Sacristan

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project