Home > Press > Green photon beams more agile than optical tweezers: Optical manipulation of macrostructures is possible with greater precision
![]() |
Abstract:
Romanian scientists have discovered a novel approach for the optical manipulation of macromolecules and biological cells. Their findings, published in EPJ B, stem from challenging the idea that visible light would induce no physical effect on them since it is not absorbed. Instead, Sorin Comorosan, working as a physicist at the National Institute for Physics and Nuclear Engineering based in Magurele, Romania, and as a biologist at the Fundeni Clinical Institute, Bucharest, Romania, and colleagues, had the idea to use green photon beams. With them, it is possible to perform optical manipulation of macrostructures, such as biological proteins, with greater precision than with optical tweezers made from focused laser beams.
The authors used what are known as high-density green photon beams (HDGP). These are capable of inducing a polarisation effect, separating the positive from the negative charges within complex macrostructures. As a result, the polarised structures interact with an external electromagnetic field and with one another. The authors experimented with long carbon chains, which represent the framework of biological macromolecules. They then used a range of physical techniques to reveal the locally induced molecular arrangements.
Comorosan and colleagues found that the effect of the beam leads to a type of matter called ‘biological optical matter.' It includes newly organised material structures, such as molecular aggregates and micro-particles, and can feature new characteristics such as antioxidant properties. The authors realised that this approach covers a larger area than focused tweezers and is capable of organising so-called mesoscopic matter—ranging from the nano to the micrometric scale— into a new 3D molecular architecture.
They then performed numerical calculations on a physical model they developed to compute the interacting force between polarisable bodies. Further study of the interaction of these polarised proteins with the body's unpolarised proteins could have far-reaching applications in immunology, genetics and epigenetics.
####
For more information, please click here
Contacts:
Franziska Hornig
49-622-148-78414
Copyright © Springer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Tools
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Photonics/Optics/Lasers
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||