Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using clay to grow bone: Researchers use synthetic silicate to stimulate stem cells into bone cells

Silicate nanoplatelets cause stem cells to become bone cells, as determined by the formation of bone matrix (in red).

Credit: Image courtesy of Khademhosseini lab.
Silicate nanoplatelets cause stem cells to become bone cells, as determined by the formation of bone matrix (in red).

Credit: Image courtesy of Khademhosseini lab.

Abstract:
In new research published online May 13, 2013 in Advanced Materials, researchers from Brigham and Women's Hospital (BWH) are the first to report that synthetic silicate nanoplatelets (also known as layered clay) can induce stem cells to become bone cells without the need of additional bone-inducing factors. Synthetic silicates are made up of simple or complex salts of silicic acids, and have been used extensively for various commercial and industrial applications, such as food additives, glass and ceramic filler materials, and anti-caking agents.

Using clay to grow bone: Researchers use synthetic silicate to stimulate stem cells into bone cells

Boston, MA | Posted on May 15th, 2013

Silicate nanoplatelets cause stem cells to become bone cells, as determined by the formation of bone matrix (in red). Image courtesy of Khademhosseini lab.

"With an aging population in the US, injuries and degenerative conditions are subsequently on the rise," said Ali Khademhosseini, PhD, BWH Division of Biomedical Engineering, senior study author. "As a result, there is an increased demand for therapies that can repair damaged tissues. In particular, there is a great need for new materials that can direct stem cell differentiation and facilitate functional tissue formation. Silicate nanoplatelets have the potential to address this need in medicine and biotechnology."

"Based on the strong preliminary studies, we believe that these highly bioactive nanoplatelets may be utilized to develop devices such as injectable tissue repair matrixes, bioactive fillers, or therapeutic agents for stimulating specific cellular responses in bone-related tissue engineering," said Akhilesh Gaharwar, PhD, BWH Division of Biomedical Engineering, first study author. "Future mechanistic studies will be performed to better understand underlying pathways that govern favorable responses, leading to a better understanding of how materials strategies can be leveraged to further improve construct performance and ultimately shorten patient recovery time."

This research was supported by the National Institutes of Health (EB009196, DE019024, EB007249, HL099073, AR057837); US Army Engineer Research and Development Center; Institute for Soldier Nanotechnology; and the National Science Foundation.

####

For more information, please click here

Contacts:
Marjorie Montemayor-Quellenberg

617-534-2208

Copyright © Brigham and Women's Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project