Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Playing quantum tricks with measurements

In their recent experiment, the scientists demonstrated that it is possible to reverse a measurement with the aid of a quantum error correction protocol.
Fotonachweis: C. Lackner
In their recent experiment, the scientists demonstrated that it is possible to reverse a measurement with the aid of a quantum error correction protocol.

Fotonachweis: C. Lackner

Abstract:
A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory - at first glance. The team led by Rainer Blatt reversed a quantum measurement in a prototype quantum information processor. The experiment is enabled by a technique that has been developed for quantum error correction in a future quantum computer.

Playing quantum tricks with measurements

Innsbruck, Austria | Posted on February 17th, 2013

Measurements on quantum systems have puzzled generations of physicists due to their counterintuitive properties. One of them is the fact that measurements on a quantum system are in general non-deterministic. This means that even if the state of the system is completely known, it is impossible to determine the outcome of a single measurement. Furthermore, the measurement alters the system's state so that a previous measurement will certainly return the same result as the first measurement. Thus the system is irreversibly altered by a measurement.



In their recent experiment, the scientists demonstrated that it is possible to reverse a measurement with the aid of a quantum error correction protocol. This seemingly contradicts the foundations of quantum theory which explicitly forbid the reversal of a quantum measurement. With a closer look it is easy to solve this riddle: The team around Philipp Schindler transfers the information of a single particle onto an entangled state consisting of three particles. If now an individual particle is measured, its original state can be reconstructed from the information residing in the remaining two particles which is not forbidden by the laws of quantum mechanics.


####

For more information, please click here

Contacts:
Philipp Schindler

43-512-507-52453

Copyright © University of Innsbruck

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication: Undoing a quantum measurement. Philipp Schindler, Thomas Monz, Daniel Nigg, Julio T. Barreiro, Esteban A. Martinez, Matthias F. Brandl, Michael Chwalla, Markus Hennrich, Rainer Blatt. Physical Review Letters 110, 070403 (2013). DOI: 10.1103/PhysRevLett.110.070403:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project