Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Playing Ball with Liquid Metal Marbles: Breakthrough in Flexible Electronics

Abstract:
Imagine a flexible electronic circuit with stretchable interconnects, reconfigurable wires, and extendable antennas, which could also heal itself in response to being damaged. It sounds far-fetched, but this type of circuit has taken another step towards reality, according new results on liquid metal marbles by Professor Kourosh Kalantar-zadeh and co-workers.



Free fall of a droplet of liquid metal galinstan and its contact with a solid surface.



Free fall of a droplet of liquid metal galinstan that has been covered in oxide nanoparticles and its subsequent contact with a solid surface.

Playing Ball with Liquid Metal Marbles: Breakthrough in Flexible Electronics

Germany | Posted on November 1st, 2012

Imagine a flexible electronic circuit with stretchable interconnects, reconfigurable wires, and extendable antennas, which could also heal itself in response to being damaged. It sounds far-fetched, but this type of circuit has taken another step towards reality, according new results on liquid metal marbles by Professor Kourosh Kalantar-zadeh and co-workers.

In this study, droplets of the liquid metal galinstan (a eutectic alloy made up of gallium, indium, and tin) were covered with insulating metal oxide nanoparticles such as tungsten oxide (WOx). The researchers then investigated the properties of these coated metal droplets by measuring the contact angle, splitting and fusing the droplets by applying a force, and observing their dynamic properties during free fall and impact with a solid surface.

As seen in the videos below, the simple addition of the oxide nanoparticles to the surface results in a dramatic difference in behavior. This then also changes the way these droplets behave in electrical contact, and it could open up new uses for liquid metal in electronic circuits.

As a proof of concept, the authors fabricated a sensitive electrochemical detector for heavy metal ions, such as cadmium and lead, in aqueous solution using the liquid metal marbles as the active component. The new possible applications of these liquid metal marbles are only limited by the imagination, and as long as the scientists continue to play, we can expect continued discoveries, and one day, we may wonder how we ever lived without liquid electronic circuits.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project