Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Squeeze light till it hurts on a quantum scale

Professor Howard Wiseman
Professor Howard Wiseman

Abstract:
An international team of physicists has pushed the boundaries on ultra-precise measurement by harnessing quantum light waves in a new way.

Squeeze light till it hurts on a quantum scale

Brisbane, Australia | Posted on September 24th, 2012

It is one thing to be able to measure spectacularly small distances using "squeezed" light, but it is now possible to do this even while the target is moving around.

An Australian-Japanese research collaboration made the breakthrough in an experiment conducted at the University of Tokyo, the results of which have been published in an article, "Quantum-enhanced optical phase tracking" in the prestigious journal, Science.

Leader of the international theoretical team Professor Howard Wiseman, from Griffith University's Centre for Quantum Dynamics (pictured), said this more precise technique for motion tracking will have many applications in a world which is constantly seeking smaller, better and faster technology.

"At the heart of all scientific endeavour is the necessity to be able to measure things precisely," Professor Wiseman said.

"Because the phase of a light beam changes whenever it passes through or bounces off an object, being able to measure that change is a very powerful tool."

"By using squeezed light we have broken the standard limits for precision phase tracking, making a fundamental contribution to science," he said. "But we have also shown that too much squeezing can actually hurt."

Dr Dominic Berry from Macquarie University has been collaborating with Professor Wiseman on the theory of this problem for many years.

"The key to this experiment has been to combine "phase squeezing" of light waves with feedback control to track a moving phase better than previously possible," Dr Berry said.

"Ultra-precise quantum-enhanced measurement has been done before, but only with very small phase changes. Now we have shown we can track large phase changes as well," he said.

Professor Elanor Huntington from UNSW Canberra, who directed the Australian experimental contribution, is a colleague of Professor Wiseman in the Centre for Quantum Computation and Communication Technology.

"By using quantum states of light we made a more precise measurement than is possible through the conventional techniques using laser beams of the same intensity," Professor Huntington said.

"Curiously, we found that it is possible to have too much of a good thing. Squeezing beyond a certain point actually degrades the performance of the measurement, making it less precise than if we had used light with no squeezing."
Participating research organisations: The University of Tokyo, Griffith University, Centre for Quantum Computation and Communication Technology (Australian Research Council), University of New South Wales (Canberra), Kyoto University, University of Waterloo (Ontario), Macquarie University, University of Queensland.

####

For more information, please click here

Contacts:
Professor Howard Wiseman
Director
Centre Staff
Centre for Quantum Dynamics
Telephone 61 (07) 373 57279
Fax 61 (07) 373 57773

Copyright © Griffith University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Quantum nanoscience

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project