Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Out of this world: UD professor reports smart fluids research in scientific journal

Eric M. Furst reports new findings of how tiny particle building blocks can be directed to self-assemble into specific structures.Photo by Kathy F. Atkinson
Eric M. Furst reports new findings of how tiny particle building blocks can be directed to self-assemble into specific structures.

Photo by Kathy F. Atkinson

Abstract:
Imagine a computer chip that can assemble itself.

According to Eric M. Furst, professor of chemical and biomolecular engineering at the University of Delaware, engineers and scientists are closer to making this and other scalable forms of nanotechnology a reality as a result of new milestones in using nanoparticles as building blocks in functional materials.

Out of this world: UD professor reports smart fluids research in scientific journal

Newark, DE | Posted on September 18th, 2012

Furst and his postdoctoral researchers, James Swan and Paula Vasquez, along with colleagues at NASA, the European Space Agency, Zin Technologies and Lehigh University, reported the finding Sept. 17 in an article in the Proceedings of the National Academies of Science (PNAS) online edition.

Entitled "Multi-scale kinetics of a field-directed colloidal phase transition," the article details how the research team's exploration of colloids, microscopic particles that are mere hundredths the diameter of a human hair, to better understand how nano-"building blocks" can be directed to "self-assemble" into specific structures.

The research team studied paramagnetic colloids while periodically applying an external magnetic field at different intervals. With just the right frequency and field strength, the team was able to watch the particles transition from a random, solid like material into highly organized crystalline structures or lattices.

According to Furst, a professor in UD's Department of Chemical and Biomolecular Engineering, no one before has ever witnessed this guided "phase separation" of particles.

"This development is exciting because it provides insight into how researchers can build organized structures, crystals of particles, using directing fields and it may prompt new discoveries into how we can get materials to organize themselves," Furst said.

Because gravity plays a role in how the particles assemble or disassemble, the research team studied the suspensions aboard the International Space Station (ISS) through collaborative efforts with NASA scientists and astronauts. One interesting observation, Furst reported, was how the structure formed by the particles slowly coarsened, then rapidly grew and separated - similar to the way oil and water separate when combined - before realigning into a crystalline structure.

Already, Furst's lab has created novel nanomaterials for use in optical communications materials and thermal barrier coatings. This new detail, along with other recorded data about the process, will now enable scientists to discover other paths to manipulate and create new nanomaterials from nanoparticle building blocks.

"Now, when we have a particle that responds to an electric field, we can use these principles to guide that assembly into structures with useful properties, such as in photonics," Furst added.

The work could potentially prove important in manufacturing, where the ability to pre-program and direct the self-assembly of functional materials is highly desired.

"This is the first time we've presented the relationship between an initially disordered structure and a highly organized one and at least one of the paths between the two. We're excited because we believe the concept of directed self-assembly will enable a scalable form of nanotechnology," he said.

About PNAS

Proceedings of the National Academy of Sciences (PNAS) is among the world's most-cited multidisciplinary scientific serials. Established in 1914, the periodical publishes cutting-edge biological, physical and social science research reports, commentaries, reviews, papers and more. PNAS is published weekly in print and daily online in PNAS Early Edition.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article - “Multi-scale kinetics of a field-directed colloidal phase transition.”

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Chip Technology

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Autonomous AI assistant to build nanostructures: An interdisciplinary research group at TU Graz is working on constructing logic circuits through the targeted arrangement of individual molecules: Artificial intelligence should speed up the process enormously January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project