Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions

Abstract:
Iranian researchers from Birjand University managed to provide an efficient means for rapid and selective adsorption of uranyl ions from aqueous samples with the help of an external magnetic field.

New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions

Tehran, Iran | Posted on September 6th, 2012

The mentioned research group has set its main goal on preparing selective and environmentally friendly adsorbents for fast separation and concentration of uranyl and thorium from aqueous solutions, for quite a while. According to their latest findings, modified ferromagnetic iron oxide nanoparticles hold promise for enabling rapid separation of uranyl ions from water samples.

To fulfill the goal, magnetic nanoparticles coated by silica nanoparticles had to be synthesized in the first step.

"Within the initial step of our work, ferromagnetic Fe3O4 nanoparticles with dimensions less than 20 nm were prepared through the sol-gel method. Then, these particles were coated by nano silica particles and modified by amino propyl triethoxy silane and quercetin, subsequently. The ultimate substance represented a novel and efficient adsorbent for uranyl ions from aqueous environments," Dr. Susan Sadeqi, the chief researcher of the group, explained.

In addition to being eco-friendly and efficient, the proposed adsorbent is regenerable and exhibits high selectivity with respect to uranyl.

"Although magnetic nanoparticles, in general, can realize the separation of uranyl and other ionic species, they cannot handle complex matrices (samples comprising of several ion species) as they lack selectivity. That is in fact why we modified the initially-synthesized nanoparticles," Sadeqi added.

Thanks to the advantages of the above-mentioned adsorbent material, they are anticipated to find applications in water and wastewater treatment facilities.

An elaborate scientific report discussing the details of this research work has been recently published in the Journal of Hazardous Materials, volume 215-216, 2012, pages 208 to 216.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project