Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano, photonic research gets boost from new 3-D visualization technology

Abstract:
For the first time X-ray scientists have combined high-resolution imaging with 3-D viewing of the surface layer of material using X-ray vision in a way that does not damage the sample.

Nano, photonic research gets boost from new 3-D visualization technology

Argonne, IL | Posted on August 13th, 2012

This new technique expands the range of X-ray research possible for biology and many aspects of nanotechnology, particularly nanofilms, photonics, and micro- and nano-electronics. This new technique also reduces "guesswork" by eliminating the need for modeling-dependent structural simulation often used in X-ray analysis.

Scientists from the Advanced Photon Source and Center for Nanoscale Materials at the U.S. Department of Energy's (DOE) Argonne National Laboratory have blended the advantages of 3-D surface viewing from grazing-incident geometry scattering with the high-resolution capabilities of lensless X-ray coherent diffraction imaging (CDI). The new technique, an adaptation of existing detector technology, is expected to work at all X-ray light sources.

"This is the future of how we will visualize structure of surfaces and interface structures in materials science with X-rays," said Argonne scientist Jin Wang, the lead author of "Three-Dimensional Coherent X-ray Surface Scattering Imaging near Total External Reflection" published on-line August 12, 2012, in the journal Nature Photonics.

By adjusting the angle with which the X-rays scatter off the sample, Wang and fellow Argonne scientists brought the 3-D power of the new imaging technique to the surface layers of the sample. In nanotechnology, most of the atomic interactions that control the functionality and efficiency of a product, such as a semiconductor or self-assembled nanostructure, occur at or just below the surface. Without a direct 3-D viewing capability, scientists have to rely on models rather than direct measurement to estimate a surface structure's thickness and form, which weakens confidence in the estimate's accuracy.

Using grazing-incidence geometry, rather than traditional CDI transmission geometry, scientists eliminated the need for modeling by using the scattering pattern to directly reconstruct the image in three dimensions.

Conventional X-ray imaging techniques allow for 3-D structural rendering, but they have lower image resolution and, therefore, greater uncertainty. Plus, in some cases, the X-rays' intensity destroys the sample. This new APS-designed technique potentially can image a sample with a single X-ray shot, making it non-destructive, a desirable quality for research on biological cells and features formed by organic materials.

Another benefit is the ability to expand CDI viewing from the nanometer to the millimeter scale when the X-ray beamline impinges on the sample at a glancing angle. This innovation allows scientists to relate the behavior of a bundle of atoms or molecules to that of an entire device. This area—the mesoscale, between nanoresearch and applied technology—has been a particularly difficult area for scientists to access. In nanotechnology, this area is thought to hold promise for making stronger, more flexible and more efficient materials. In biology, it connects intercellular behavior with the activity of individual cells and the larger organism.

"Hopefully this technique will be applied to research in biology, microelectronics and photonics" said Tao Sun, a postdoctoral research fellow working at the APS and the first author on the research. "This technique holds great promise because the resolution we can reach is only limited by wavelength, a fraction of a nanometer. So the APS upgrade and other advances in light source and detector technology will easily provide even higher-resolution images than we have achieved in this work."

####

About DOE/Argonne National Laboratory
The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy's Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit science.energy.gov/user-facilities/basic-energy-sciences/.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Tona Kunz

630-252-5560

Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Imaging

Single atoms show their true color July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Single atoms show their true color July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project