Home > Press > Iranian, Spanish Scientists Find New Method to Produce NO2 Nanosensor
Abstract:
Researchers at Materials and Energy Research Center of Iran in association with Spanish researchers from University of Barcelona succeeded in the synthesis of nanosensors made of indium oxide (In2O3) nanoparticles through a novel alternative current electrophoresis deposition method.
This method has better response and shorter time response in comparison with other existing methods, the researchers said.
Indium oxide is known as a semiconductor oxide, which is very appropriate for the identification of gases at low temperatures in comparison with other metal oxide semiconductors.
The researchers synthesized various layers of indium oxide (In2O3) nanoparticles through alternative current electrophoresis deposition at various frequencies. Next, they proposed the optimum conditions for the synthesis of such layers by taking into consideration the sensitivity of the layers. A frequency of 10 kHz was reported as the best and the optimum frequency for the synthesis of the sensors.
Then, they produced thick layers of indium oxide (In2O3) nanoparticles by using the optimum frequency in order to compare the properties of the synthesized nanosensor with those of the sensors produced through precipitation method. The comparison proved that the new nanosensor benefited from more functional layers. According to the report of the researchers, the newly synthesized nanosensor provides more space for the passage of the gas due to the presence of pores caused by the chain structure of the interconnected nanoparticles. This fact results in the more desirable response of the nanosensor in comparison with the other sensors.
Studies also showed that the new type of the nanosensor had a quicker response time for the reduction compared to the other type.
The research has been published in detail on 20 May 2012 in Sensors and Actuators B: Chemical, vol. 166-167, pp. 128-134.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||