Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Going big: UD researchers report progress in development of carbon nanotube-based continuous fibers

From left, Tsu-Wei Chou, Amanda Wu and Weibang Lu in Spencer Laboratory
Photo by Kathy F. Atkinson
From left, Tsu-Wei Chou, Amanda Wu and Weibang Lu in Spencer Laboratory

Photo by Kathy F. Atkinson

Abstract:
The Chou research group in the University of Delaware's College of Engineering recently reported on advances in carbon nanotube-based continuous fibers with invited articles in Advanced Materials and Materials Today, two high impact scientific journals.

Going big: UD researchers report progress in development of carbon nanotube-based continuous fibers

Newark, DE | Posted on July 25th, 2012

According to Tsu-Wei Chou, Pierre S. du Pont Chair of Engineering, who co-authored the articles with colleagues Weibang Lu and Amanda Wu, there has been a concerted scientific effort over the last decade to "go big" - to translate the superb physical and mechanical properties of nanoscale carbon nanotubes to the macroscale.

The result, he says, has been the development of continuous fibers comprised solely of carbon nanotubes held together through local entanglements and van der Waals forces, a type of weak molecular interactions.

"Despite a discontinuous microstructure, these carbon nanotube fibers exhibit strengths comparable to current high performance fibers with significantly lower densities, creating new avenues for ultra-light weight multifunctional composite materials and structures," explains Chou.

"Furthermore, their flexibility and electrical conductivity have gained attention and given rise to the potential for carbon nanotube fibers to serve as embedded strain and damage sensors."

The challenge, however, remains how to scale up the material's size without sacrificing performance and functionality.

Lu's article, published in Advanced Materials, provides an in-depth analysis of the current carbon nanotube fiber processing methodology, including drawbacks and potential avenues for improvement. The article offers a thorough comparison of the current physical, electrical and mechanical properties of carbon nanotube fibers.

Wu's article, published in Materials Today, details the recent experimental characterization of carbon nanotube fibers performed by the Chou group. The review emphasizes the dynamic electromechanical behavior of carbon nanotube fibers and explores opportunities for carbon nanotube fibers in advanced composite applications.

About the researchers

Weibang Lu received his doctoral degree in solid mechanics from Tsinghua University, China, in 2009. His research focuses on the development of theoretical and computational approaches to analyze and predict the behavior of carbon nanotube fibers, with particular emphasis on atomic level approaches.

Amanda Wu received her doctoral degree in materials science and engineering from UD in 2009. Her work explores the experimental characterization of composite materials and their reinforcements with particular emphasis on the dynamic, high strain rate behavior of materials.

Lu and Wu are both research associates in the Department of Mechanical Engineering and the Center for Composite Materials.

Article by Karen B. Roberts

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project