Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biodegradable Nanoparticles Slip Through Mucus

Abstract:
Researchers at Johns Hopkins University (JHU) have created biodegradable, ultra tiny, nanosized particles that can easily slip through the body's sticky and viscous mucus secretions to deliver a sustained-release medication cargo. The interdisciplinary team of researchers, led by Justin Hanes of the JHU Center for Nanomedicine, developed the nanoparticles so that they not only penetrate mucus but degrade over time into harmless components. The team believes these nanoparticles have potential for delivering chemotherapeutic agents to tumors in mucus-coated tissues such as the lung and cervix.

Biodegradable Nanoparticles Slip Through Mucus

Bethesda, MD | Posted on July 2nd, 2012

Reporting its work in the journal Science Translational Medicine, the Johns Hopkins team describes its development of a mucus-penetrating nanoparticle for achieving vaginal delivery of a drug that could prevent herpes simplex virus infection. However, the authors note that the same design principles would apply to a nanoparticle that would deliver anticancer agents to cervical tumors or cut through the mucus in the lungs.

The new biodegradable particles are made of two polymers routinely used in existing medications: poly(lactic-co-glycolic acid), known as PLGA, and poly(ethylene glycol), commonly called PEG. An inner core traps therapeutic agents inside the nanoparticle, while a dense outer coating allows a particle to move through mucus nearly as easily as if it were moving through water and permits the drug to remain in contact with affected tissues for an extended period of time. Tests in mice showed that these mucus-penetrating nanoparticles were able to uniformly coat the vaginal tissue, penetrat through mucus to reach the vaginal folds within minutes, and remain in the target tissue for 24 hours. In contrast, conventional nanoparticles were aggregated and did not distribute along the vaginal tissue uniformly, remained trapped in the mucosal layer, and were unable to reach the tissue below.

"The major advance here is that we were able make biodegradable nanoparticles that can rapidly penetrate thick and sticky mucus secretions, and that these particles can transport a wide range of therapeutic molecules, from small molecules, such as chemotherapeutics and steroids, to macromolecules, such as proteins and nucleic acids," said Dr. Hanes, who is also a member of the Johns Hopkins Center for Cancer Nanotechnology Excellence. "Previously, we could not get these kinds of sustained-release treatments through the body's sticky mucus layers effectively."

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus."

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project