Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research

(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory.
(From left) Brookhaven National Laboratory chemists Kotaro Sasaki, Radoslav Adzic, Jia Wang, and Miomir Vukmirovic work on the recently licensed electrocatalysts using a new electron microscope in their laboratory.

Abstract:
Chemist Radoslav Adzic and his research team at the U.S. Department of Energy's Brookhaven National Laboratory have won a 2012 R&D 100 award from R&D Magazine for their work designing durable electrocatalysts for use in fuel cells. Their work could make future fuel cell vehicles more reliable and economical.

Brookhaven Lab Chemists Win R&D 100 Award for Fuel Cell Research

Upton, NY | Posted on June 20th, 2012

The R&D 100 awards recognize the 100 most technologically significant products introduced into the marketplace over the past year. Brookhaven scientists have previously won R&D 100 awards for excellence in a diverse array of fields, including imaging techniques, cancer detection, and microscopes for nanomaterials.

"We are deeply honored to be receiving this prestigious award," said Adzic. "We hope it will lead to even greater interest in this type of catalyst."

Adzic collaborated on the award-winning research with Brookhaven scientists Jia Wang, Miomir Vukmirovic, and Kotaro Sasaki. On Nov. 1, they will be honored alongside the rest of the R&D 100 winners at a banquet in Orlando, FL.

"Congratulations to this year's R&D 100 award winners," said Energy Secretary Steven Chu. "The research and development at the Department of Energy's laboratories continues to help the nation meet our energy challenges, strengthen our national security and improve our economic competitiveness."

Fuel cells convert chemical energy into electricity, using a catalyst for the necessary oxidation and reduction reactions. Platinum is the most efficient electrocatalyst for fuel cells, but it is also expensive and unstable.

To help reduce the cost and improve stability, the Brookhaven team developed an electrocatalyst that uses a very small amount of platinum, a one atom thick nanoshell surrounding a palladium or palladium alloy nanoparticle core. Proper design of the alloy core both improves the catalytic activity and the durability of the platinum monolayer nanoshell.

"The core-shell structure of this catalyst is amenable to tailoring its properties," Adzic said.

Since platinum in automotive fuel cells tends to corrode during the voltage cycling of stop-and-go driving, the improved durability through proper design of the palladium alloy core is an important improvement. The core keeps the platinum stable and further increases the fuel cell's resilience.

The resulting catalyst is durable, highly active, and significantly less expensive than other catalysts, containing just one-tenth as much as platinum as a conventional catalyst. With platinum hovering at prices approaching $50,000 a kilogram, this advance represents a significant potential cost savings for fuel cell manufacturers.

Adzic's group is now working on finding alternative materials for the palladium core to make electrocatalysts even more affordable.

Earlier this year, the team's invention was licensed for use in electric vehicles by N.E. Chemcat Corporation, Japan's leading catalyst manufacturer.

Adzic's research is funded by the DOE Office of Energy Efficiency and Renewable Energy and the DOE Office of Science, with some Cooperative Research and Development (CRADA) funding from industrial partners.

Written by Aviva Hope Rutkin

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Brookhaven National Laboratory www.bnl.gov
Media & Communications Office Phone: (631)344-3174
Bldg. 400 - P.O. Box 5000 Fax: (631)344-3368
Upton, NY 11973

Kay Cordtz
(631) 344-2719

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project