Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > McLean Report on nanotechnology that may enhance medication delivery and improve MRI performance

Abstract:
Researchers at Harvard-affiliated McLean Hospital have shown a new category of "green" nanoparticles comprised of a non-toxic, protein-based nanotechnology that can non-invasively cross the blood brain barrier and is capable of transporting various types of drugs.

McLean Report on nanotechnology that may enhance medication delivery and improve MRI performance

Belmont, MA | Posted on May 1st, 2012

In an article published May 1, 2012 online in PLoS ONE, Gordana Vitaliano, MD, director of the Brain Imaging NaNoTechnology Group at the McLean Hospital Imaging Center, reported that clathrin protein, a ubiquitous protein found in human, animal, plant, bacteria and fungi cells, can been modified for use as a nanoparticle for in-vivo studies. "Clathrin has never been modified for use in vivo and offers many new and interesting possibilities for delivering drugs and medical imaging agents into the brain", said Vitaliano.

Clathrin is the body's primary delivery vehicle responsible for delivering many different types of molecules into cells. Vitaliano therefore believed that the protein's naturally potent transport capabilities might be put to practical medical use for drug delivery and medical imaging.

"This study provides a new insight into utilizing bioengineered clathrin protein as a novel nanoplatform that passes the blood brain barrier," said Vitaliano, who successfully attached different fluorescent labels, commonly used in imaging, to functionalize clathrin nanoparticles. "We were able to show that the clathrin nanoparticles could be non-invasively delivered to the central nervous system (CNS) in animals. The clathrin performed significantly."

Of major importance for future clinical applications, Vitaliano also showed that clathrin crossed and/or bypassed the blood-brain barrier without enhancers or modifications, unlike other nanoparticles. These findings open the door to exploring new and important CNS medical applications.

One important medical application for clathrin nanoparticles would be Magnetic Resonance Imaging (MRI). Gadolinium contrast agents are often used to improve MRI performance. In one configuration, Vitaliano found that functionalized clathrin nanoparticles performed 8,000 times better than an FDA approved MRI contrast agent (gadopentetate dimeglumine).

"Stated another way, it means 8,000 times less gadolinium might be required for achieving good MRI results. Because very low gadolinium concentrations would be required for MRI, it could significantly decrease gadolinium toxicity, which is an important issue," explained Vitaliano. "Clathrin transported gadolinium is therefore among the most potent, biocompatible contrast agents available."

These results in two different applications showed that clathrin offers substantial functionalization and transport flexibility. Purified clathrin nanoparticles could therefore serve as an appealing alternative to other medical nanoplatforms such as dendrimers, nanogels, solid lipid nanospheres, liposomes, and the like.

Given the critical need for new types of CNS drug transport capabilities, Vitaliano said her work would likely be of interest to researchers involved in neuroimaging and neuroscience, but also to radiologists, bioengineers, chemists, physicists, material scientists, biomedical researchers, and other researchers active at the frontiers of imaging and drug delivery.

Looking ahead, Vitaliano noted that her findings may also facilitate other studies for examining signaling pathways in different diseases that rely in whole or in part on clathrin transport, and thus may have a substantial impact in multiple fields.

####

About McLean Hospital
McLean Hospital is the largest psychiatric clinical care, teaching and research facility of Harvard Medical School, an affiliate of Massachusetts General Hospital and a member of Partners HealthCare. For more information about McLean Hospital, visit www.mclean.harvard.edu.

For more information, please click here

Contacts:
Adriana Bobinchock

617-855-2110

Copyright © McLean Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project