Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconducting strip could become an ultra-low-voltage sensor: Minute-scale interactions govern electronic behaviour of superconductors with potential applications for voltage measurement techniques

Abstract:
Researchers studying a superconducting strip observed an intermittent motion of magnetic flux which carries vortices inside the regularly spaced weak conducting regions carved into the superconducting material. These vortices resulted in alternating static phases with zero voltage and dynamic phases, which are characterised by non-zero voltage peaks in the superconductor. This study, which is about to be published in EPJ B¹, was carried out by scientists from the Condensed Matter Theory Group of the University of Antwerp, Belgium, working in collaboration with Brazilian colleagues.

Superconducting strip could become an ultra-low-voltage sensor: Minute-scale interactions govern electronic behaviour of superconductors with potential applications for voltage measurement techniques

New York, NY and Heidelberg, Germany | Posted on April 30th, 2012

Superconductors, when subjected to sufficiently strong magnetic fields, feature vortices that carry quantized amounts of magnetic flux, although the natural tendency of superconductors is to expel such flux. The authors relied on the Ginzburg-Landau theory to study the dynamic of the nanometric- to millimetric-scale-width superconducting strip, which was subjected to a magnetic field applied at a right angle and a current applied alongside its length.
Typically, weakly acting superconducting regions are natural impediments for the passage of electrical current. However, the authors found that they also work as efficient pathways for vortices to enter and exit the superconducting strip. The increasing magnetic field also increases the density of mutually repelling vortices, which stimulates vortex motion across the strip in the presence of an external current. At the same time, the barrier for vortex entry and exit on the strip boundaries is also dependent on the magnetic field. This interplay of magnetic-field-dependent barriers and vortex-vortex interaction results in an on/off vortex motion in increasing magnetic fields.
Due to the simple geometry of the strip, these results can be confirmed experimentally in magnetoresistance measurements. These findings could be applicable in gate devices used to control various modes of on/off states in electrical systems which operate in specific windows of temperature, applied magnetic field, current and voltage.
Reference:
1. Berdiyorov G. R., de C. Romaguera A. R., Milosevic M. V., Doria M. M., Covaci L., Peeters F. M. (2012), Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links, European Physical Journal B (EPJ B), DOI: 10.1140/epjb/e2012-30013-7

####

For more information, please click here

Contacts:
Janine Haubenreisser
Springer
+49-6221-487-8414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Visit the homepage of the European Physical Journal:

Article on SpringerLink:

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Atomic force microscopy in 3D July 5th, 2024

Physics

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Superconductivity

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project