Home > Press > Imaging Complex Domain Wall Structures in Magnetic Nanostripes
Abstract:
Researchers from the NIST Center for Nanoscale Science and Technology and Massachusetts Institute of Technology have used the scanning electron microscopy with polarization analysis (SEMPA) technique to provide the first direct images of the magnetic structure of highly twisted domain walls in patterned thin film magnetic nanowires.
This imaging method allows these complex and delicate structures to be easily compared to magnetic simulations, a useful step for developing technology that uses domain walls in nanowires for high density data storage and for field or current driven magnetic logic. A typical domain wall separates two opposite regions of magnetization, making it a "180° wall". The researchers showed that several 180° walls could be injected into a nanowire, where they either annihilated each other or they combined to form complex walls in which the magnetization rotated by up to 540°. The 360° walls were of particular interest, since their magnetic behavior is dramatically different from the 180° walls currently used in prototype memory and logic devices. The researchers believe that, in addition to providing information about how 180° walls interact in domain wall-based nanowire memories, this work may lead to new magneto-electronic applications using 360° domain walls, such as manipulating bits using highly localized magnetic fields in magnetic logic circuits.
*Formation and structure of 360 and 540 degree domain walls in thin magnetic stripes, Y. Jang, S. R. Bowden, M. Mascaro, J. Unguris, and C. A. Ross, Applied Physics Letters 100, 062407 (2012).
####
About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.
For more information, please click here
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Chip Technology
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Discoveries
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |