Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymerization Inhibition for 3D Nanolithography

Abstract:
Being able to produce arbitrarily complex 3D structures through a simple fabrication method is the ultimate goal in nanostructure pattering. Direct-laser-writing (DLW) optical lithography could be the method of choice. Typically, photoinitiator molecules in a photoresist are excited via two-photon absorption by a tightly focused laser beam, which initiate a polymerization reaction only within the light focus. The polymerized region is then the building block for more complex structures that are usually created by scanning either sample or focus. However, due to the wave nature of light the focal spot cannot be smaller than about 100 nm. Therefore DLW is not yet a true nano-technology.

Polymerization Inhibition for 3D Nanolithography

Germany | Posted on April 5th, 2012

In 2010 Joachim Fischer and Martin Wegener (Karlsruhe Institute of Technology) succeeded in the implementation of diffraction unlimited DLW optical lithography by using a second beam to fully reversibly inhibit the polymerization in a stimulated emission depletion (STED) inspired configuration. Being able to stop the radical formation, which initiate the polymerization, makes it possible to only allow polymerization in a much smaller region than the focal spot rendering real nano-patterning possible.

Now the authors could undoubtfully identify the underling process for polymerization inhibition in a novel photoresist containing a ketocoumarin photoinitiator. Lithography experiments with time-delayed laser pulses of variable wavelengths revealed a slow and a fast component with distinct spectral signatures. The fast component exhibits a time constant of about 1 ns and spectrally follows the anticipated gain spectrum. Thus it can be assigned to stimulated emission. This analysis lays the foundation for systematically optimizing the conditions in next-generation STED-DLW optical lithography.

The research is reported in the first issue of Advanced Optical Materials, the new section in Advanced Materials (2010 IF: 10.880) dedicated to exploring light-matter interactions. The paper, "Ultrafast Polymerization Inhibition by Stimulated Emission Depletion for Three-dimensional Nanolithography", is available for free for Wiley Online Library now.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project