Home > Press > Nano-imprinted photonic structures improve efficiency of silicon solar cells
![]() |
nanoimprinted_solarcells.jpg: (left) Cross section SEM of the 2D periodic photonic nanostructures, (right) 1-µm-thin crystalline silicon solar cells on glass including the 2D periodic photonic nanostructures with obvious diffraction of light. |
Abstract:
Imec has successfully fabricated crystalline silicon (c-Si) solar cells including 2D periodic photonic nanostructures made with nano-imprint lithography. The result was an improvement in energy-conversion efficiency, compared to unpatterned cells, through a better absorption of the light spectrum. The technique shows a path to further reducing the thickness of solar cells while keeping the efficiency as high as possible.
The reduction of the silicon wafer thickness from 150μm to 50μm and below is potentially the best way to decrease the cost of solar cells. At imec, we pursue this path through ultrathin-film crystalline silicon technologies. However, if thinner photoactive layers are used, the optical absorption is significantly reduced. This is especially so at the near-infrared region of the solar spectrum. A photon with a wavelength of 1μm needs an absorption depth as deep as 100μm. Losing this part of the spectrum reduces the overall conversion efficiency of the cells.
Recently, the field of photonics has come up with methods to manipulate light through specific structures that are smaller than the wavelengths. This makes it possible to use periodic photonic nanostructures to affect the motion of photons in a similar way as the periodicity of atoms in a semiconductor crystal affects the motion of electrons. But to do so, we need efficient patterning techniques with nanometer-scale resolution.
At imec, we used nano-imprint lithography to fabricate 2D periodic photonic nanostructures. Nano-imprint lithography is a recent top-down approach for fabricating nanometer-scale patterns. It is one of the best candidates to improve the light absorption while maintaining an acceptable manufacturing cost, but it is currently barely used for c-Si PV applications. The patterning is performed by direct deformation of the resist material through mechanical pressure and a subsequent etching step.
Compared to the standard solar cell texturing by wet-etching, subwavelength patterning using nano-imprint lithography has some advantages. First, there is less material waste upon etching (less than a micron is consumed) compared to the state-of-the-art texturing, where 5-10 microns are lost. And second, diffraction and scattering of light is possible at higher angles due to the dimensions of the nanopattern.
####
For more information, please click here
Contacts:
Barbara Kalkis
Maestro Marketing & PR
Copyright © IMEC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |