Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 2 crystals linked by quantum physics: Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory

Abstract:
For almost fifteen years Professor Nicolas Gisin and his physicist col- laborators have been entangling photons. If this exercise seems to them perhaps henceforth trivial, it continues to elude us ordinary humans. The laws that govern the quantum world are so strange that they completely escape us human beings confronted with the laws of the macroscopic world. This apparent difference in nature between the infinitesimally small and our world poses the question of what link exists between the two.

2 crystals linked by quantum physics: Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory

Switzerland | Posted on March 5th, 2012

However these two worlds do interact. To realise this, one must fol- low the latest experiment of the Group of Applied Physics (GAP). Nico- las Gisin, researcher Mikael Afzelius and their team have actually pro- duced the entanglement of two macroscopic crystals, visible to the naked eye, thanks to a quantum particle, a photon, otherwise known as a particle of light.

To achieve this exploit, the physicists developed a complex device to which they hold the key. After a first system that allows them to verify that they've actually managed to release one, and only one, photon, a condition essential to the success of the experiment, a second de- vice "slices" this particle in two. This splitting allows the researchers to obtain two entangled photon halves. In other words, even though they are not in the same location, the two halves continue to behave as if they were one.

Wait for the photons to exit

The two halves are then each sent through a separate crystal where they will interact with the neodymium atoms present in its atomic structure. At that moment, because they are excited by these entan- gled photons, the neodymium lattices in each crystal likewise become entangled. But how can we be certain that they've actually reacted to the two photon halves?

That's simple ... or nearly! They just have to wait for the two particles to exit the crystals - since they exit after a rather brief period of about 33 nanoseconds - and to verify that it really is the entangled pair. "That's exactly what we found since the two photons that we cap- tured exiting the crystals showed all the properties of two quantum particles behaving as one, characterised by their simultaneity in spite of their separation", Félix Bussières rejoices, one of the authors of the article.

In addition to its fundamental aspect, this experiment carries with it potential applications. Actually, for the specialists in quantum entan- glement, this phenomenon has the unpleasant habit of fading when the two entangled quantum objects are too far from one another. This is problematic when one envisions impregnable quantum cryp- tography networks which could link two distant speakers separated by several hundreds or even thousands of kilometres.

"Thanks to the entanglement of crystals, we can now imagine inven- ting quantum repeaters", Nicolas Gisin explains, "in other words, the sorts of terminals that would allow us to relay entanglement over large distances. We could then also create memory for quantum com- puters."

Entanglement still has many surprises in store for us.

####

For more information, please click here

Contacts:
Nicolas Gisin

41-223-790-502

Copyright © Université de Genève

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Quantum Computing

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

Announcements

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Photonics/Optics/Lasers

Single atoms show their true color July 5th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Quantum nanoscience

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

What is "time" for quantum particles? Publication by TU Darmstadt researchers in renowned journal "Science Advances" May 17th, 2024

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project