Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Asylum Research Initiates 2012 Webinar Series February 22: “Smaller and Quieter: Ultra-high Resolution AFM Imaging”

Bacteriorhodopsin imaged with the Cypher AFM in AC mode using a short cantilever. In the original AFM image (top) missing sub-units are easily resolved (white circle) and its power spectrum shows spots outside of the 10 Angstrom circle, demonstrating sub-nanometer resolution. The lower right image is a correlation average of the original image.
Bacteriorhodopsin imaged with the Cypher AFM in AC mode using a short cantilever. In the original AFM image (top) missing sub-units are easily resolved (white circle) and its power spectrum shows spots outside of the 10 Angstrom circle, demonstrating sub-nanometer resolution. The lower right image is a correlation average of the original image.

Abstract:
Asylum Research, the technology leader in scanning probe/atomic force microscopy (SPM/AFM), is initiating its 2012 Webinar Series on February 22. The first webinar will focus on ultra- high resolution imaging. AFM pioneer, inventor and Asylum Research co-founder, Dr. Jason Cleveland, will present "Smaller and Quieter: Ultra-high Resolution AFM Imaging."

Asylum Research Initiates 2012 Webinar Series February 22: “Smaller and Quieter: Ultra-high Resolution AFM Imaging”

Santa Barbara, CA | Posted on January 31st, 2012

Miniaturization of cantilevers for Atomic Force Microscopy has increased their resonant frequencies and decreased their thermal noise, allowing faster, lower noise measurements. When used in the extremely low noise CypherTM AFM, these levers have enabled significant improvements in imaging resolution in air and especially in liquids. On crystals, individual atomic point defects can now be routinely resolved, and this higher resolution also extends to biological samples. Examples to be shown include the movement of individual point defects in bacteriorhodopsin, atomic point defects in calcite, and resolution of the double-helix structure of DNA in solution.

"Recent advances in cantilever and AFM system design have enabled imaging and measurements that were previously not possible. I'll talk about these advances and show some of our latest achievements and capabilities, which I think will be of substantial interest to the full spectrum of AFM users, from beginners to the most experienced," said Dr. Cleveland.

To register, please go to www3.gotomeeting.com/register/982536366. Attendance will be limited, so early registration is recommended.

Additional Asylum Research Webinars in the coming months will include topics such as fast imaging and nanomechanical analysis tools. Details can be found at the www.AsylumResearch.com.

####

About Asylum Research
See what our users are saying about Asylum Research at:
www.asylumresearch.com/References/Testimonials.shtml

Asylum Research is the technology leader in atomic force and scanning probe microscopy (AFM/SPM) for both materials and bioscience applications. Founded in 1999, we are an employee owned company dedicated to innovative instrumentation for nanoscience and nanotechnology, with over 300 years combined AFM/SPM experience among our staff. Our instruments are used for a variety of nanoscience applications in material science, physics, polymers, chemistry, biomaterials, and bioscience, including single molecule mechanical experiments on DNA, protein unfolding and polymer elasticity, as well as force measurements for biomaterials, chemical sensing, polymers, colloidal forces, adhesion, and more. Asylum’s product line offers imaging and measurement capabilities for a wide range of samples, including advanced techniques such as electrical characterization (CAFM, SKPM, EFM), high voltage piezoresponse force microscopy (PFM), thermal analysis, quantitative nanoindenting, and a wide range of environmental accessories and application-ready modules.

Asylum’s MFP-3D set the standard for AFM technology, with unprecedented precision and flexibility. The MFP-3D is the first AFM with true independent piezo positioning in all three axes, combined with low noise closed-loop feedback sensor technology. The MFP-3D offers both top and bottom sample viewing and easy integration with most commercially-available inverted optical microscopes.

Asylum’s new Cypher AFM is the world’s first new small sample AFM/SPM in over a decade, and sets the new standard as the world’s fastest and highest resolution AFM. Cypher provides low-drift closed loop atomic resolution for the most accurate images and measurements possible today, >20X faster AC imaging for images in minutes instead of minutes or hours, Spot-OnTM automated laser and photodetector alignment for easy setup, integrated thermal, acoustic and vibration control, and broad support for all major AFM/SPM scanning modes and capabilities.

Asylum Research offers the lowest cost of ownership of any AFM company. Ask us about our industry-best 2-year warranty, our legendary product and applications support, and our exclusive 6-month money-back satisfaction guarantee. We are dedicated to providing the most technically advanced AFMs for researchers who want to take their experiments to the next level. Asylum Research also distributes third party cantilevers from Olympus, Nanoworld/Nanosensors, and our own MFM and iDriveTM tips.

For more information, please click here

Contacts:
Terry Mehr
Director of Marketing Communications
or Monteith Heaton
EVP, Marketing/Business Development
Asylum Research
6310 Hollister Avenue
Santa Barbara, CA 93117
805-696- 6466x224/227

Copyright © Asylum Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Announcements

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Tools

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Events/Classes

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project