Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stain Your Brain: Nanoparticles Enable Brain Surgery

Image: dream designs / FreeDigitalPhotos.net
Image: dream designs / FreeDigitalPhotos.net

Abstract:
by Adrian Miller

Brain surgery is hard. Proverbially hard, in fact (writing this article might need a bit of thought, but, you know, it's not brain surgery). One of the most difficult parts for operating surgeons is distinguishing the tumorous growth from healthy brain tissue - the more precisely delineated the tumor is, the better the chances for a successful operation and recovery. Now, researchers have announced new work on a new system, using dye-loading nanoparticles, which could have a major impact on the success of brain surgery.

Stain Your Brain: Nanoparticles Enable Brain Surgery

Germany | Posted on January 20th, 2012

The most common current method to delineate between tumor and brain tissue is to use images of the brain taken before the operation begins - while this helps to guide the operating surgeon (who can also call on their ability to distinguish the tumor on sight), cancerous tissue can be completely indistinguishable from healthy brain tissue.

Early efforts to improve this basic method include the use of imaging systems during the surgery - which can distract the surgeon from the task at hand, by splitting their attention between the monitor and the patient, and which also call for high-cost, complex equipment - and the use of fluorescence tagging of brain tumors, raising the terrifying possibility of doctors performing this complex operation in the dark!

That's where Professor Raol Kopelman's University of Michigan research team come in - deciding that these current methods just won't cut it, they've developed a new system that uses dye-loaded nanoparticles to tag brain tumors for removal.

The Michigan team's system is designed to avoid the pitfalls of both these approaches - the use of a visible-light dye means no special detection equipment or lighting conditions are necessary. However, it is not without its own pitfalls - when the team published their initial findings in 2009, they reported one major problem that potentially made in vivo application impossible. The nanoparticles were loaded with dye in such a way that they produced too much non-specific staining - they just wouldn't show the tumor clearly enough.

Move forward three years, and things are looking much more promising; the combination of a new, covalently linkable dye derivative, a better nanoparticle synthesis procedure, and the introduction of PEG crosslinkers to improve stability in blood have resulted in a fair more stable system. Tests, both in vitro and in vivo, found no dye leaching, and tumors remain stained for long periods of time. One suspects that, although there may be some stops along the way, the final destination of this method will be the operating theater.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

R. Kopelman et al., Small ; DOI: 10.1002/smll.201101607

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026

Imaging

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project