Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene rips follow rules: Rice University simulations show carbon sheets tear along energetically favorable lines

A series of computer simulations show that under stress, graphene will rip along paths that leave armchair or zigzag edges. Both types of edge favorable for particular electronic applications, said researchers at Rice University, where the simulations were carried out. (Credit: Vasilii Artyukhov/Rice University)
A series of computer simulations show that under stress, graphene will rip along paths that leave armchair or zigzag edges. Both types of edge favorable for particular electronic applications, said researchers at Rice University, where the simulations were carried out. (Credit: Vasilii Artyukhov/Rice University)

Abstract:
Research from Rice University and the University of California at Berkeley may give science and industry a new way to manipulate graphene, the wonder material expected to play a role in advanced electronic, mechanical and thermal applications.

Graphene rips follow rules: Rice University simulations show carbon sheets tear along energetically favorable lines

Houston, TX | Posted on January 5th, 2012

When graphene - a one-atom thick sheet of carbon - rips under stress, it does so in a unique way that puzzled scientists who first observed the phenomenon. Instead of tearing randomly like a piece of paper would, it seeks the path of least resistance and creates new edges that give the material desirable qualities.

Because graphene's edges determine its electrical properties, finding a way to control them will be significant, said Boris Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science and professor of chemistry.

It's rare that Yakobson's work as a theoretical physicist appears in the same paper with experimental evidence, but the recent submission in Nano Letters titled "Ripping Graphene: Preferred Directions" is a notable exception, he said.

Yakobson and Vasilii Artyukhov, a postdoctoral researcher at Rice, recreated in computer simulations the kind of ripping observed through an electron microscope by researchers at Berkeley.

The California team noticed that cracks in flakes of graphene followed armchair or zigzag configurations, terms that refer to the shape of the edges created. It seemed that molecular forces were dictating how graphene handles stress.

Those forces are robust. Carbon-carbon bonds are the strongest known to man. But the importance of this research, Yakobson said, lies in the nature of the edge that results from the rip. The edge of a sheet of graphene gives it particular qualities, especially in the way it handles electric current. Graphene is so conductive that current flows straight through without impediment - until it reaches the edge. What the current finds there makes a big difference, he said, in whether it stops in its tracks or flows to an electrode or another sheet of graphene.

"Edge energy" in graphene and carbon nanotubes has long been of interest to Yakobson, who issued a paper last year with a formula to define the energy of a piece of graphene cut at any angle. In molecular carbon, armchair and zigzag edges are the most desirable because atoms along the edge are spaced at regular intervals and their electrical properties are well-known: Zigzag graphene is metallic, and armchair graphene is semiconducting. Figuring out how to rip graphene for nanoribbons with edges that are all one type or the other would be a breakthrough for manufacturers.

Yakobson and his team determined that graphene seeks the most energy-efficient path. The Berkeley team noticed that multiple cracks in a flake of graphene flowed strictly along lines that were at (or at multiples of) 30 degrees apart from each other.

"Graphene prefers to tear by expending the least amount of energy," Yakobson said. He noted the 30-degree separation between the angles that differentiate zigzag and armchair in a hexagonal graphene lattice.

To prove it, Artyukhov spent two months building molecular simulations that pulled virtual scraps of graphene apart in various ways. Depending on the force applied, a flake would rip along a straight line or fork in two directions. But the edges produced would always be along 30-degree lines and would be either zigzag or armchair.

"Basically, the direction of the crack in classical fracture theory is determined by the path it could take with the minimal cost in energy," Artyukhov said. "My simulations showed that under some conditions, this could be the case with graphene. It provided a pretty reasonable and clear and solid explanation for this unusual experimental thing."

Artyukhov found that pulling too hard on virtual graphene would shatter it. "Our main effort was to pull on it delicately enough that it has time to pick the direction it would prefer, rather than have a complete failure." He noted the simulations were much faster than rips that would happen in real-world circumstances.

Also surprising was the discovery that rips in graphene across grain boundaries follow the same rules. Tears do not follow the boundary, which would create energetically unfavorable edges, but pass through and switch to the most favorable direction in the new grain.

"The Berkeley folks didn't do controllable tears, but their work opens technological possibilities for the future," Yakobson said. "For electronics, you want ribbons that go in a particular direction, and this research suggests that this is possible. It would be a big deal.

"Think of graphene like a sheet of postage stamps: You apply a load, and you can tear the sheet in a well-defined direction. That's basically what this experiment reveals for graphene," he said. "There are invisible directions prepared for you."

Co-authors are Rice graduate student Yuanyue Liu as well as graduate students Kwanpyo Kim and William Regan and Professors Michael Crommie and Alex Zettl, all of the University of California at Berkeley.

The research was supported by the Department of Energy, the National Science Foundation and the Office of Naval Research (MURI) and by the Lockheed Martin Corp. through LANCER.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf .

For more information, please click here

Contacts:
Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project