Home > Press > Iranian Scientists Increase Data Storage Density by Magnetic Nanolayers
Abstract:
Iranian researchers, in cooperation with their British and Belgian counterparts, managed to boost data storage density using magnetic nanolayers.
"The subject of present study lies in line with manufacturing magnetic memory devices using 3D architecture of a ferromagnetic nanolayer. The 3D polyhedral structures were built by electrochemical layer deposition technique and the magnetic properties of a 3D structure was studied individually," Dr. Farzad Nasirpouri, faculty member at Sahand University of Technology, said.
He elaborated on the goal of this research, and said, "We did our research aiming at increasing data storage density by magnetic method."
Explaining about the method adopted in this research, faculty member of Sahand University of Technology said, "The procedure is based on electrochemical layer deposition for synthesizing 3D ferromagnetic structures. Electrochemical deposition was first performed to form a polyhedral model of silver on which one nano nickel layer was deposited. A ferromagnetic shell structure with multiple crystalline sides is resulted."
"The magnetic properties of a single structure (not in the array form) were identified by a nanomagnetic probe hall. The magnetic properties of resulted structures were also simulated by micromagnetic methods."
Elaborating on the results, Dr. Nasirpouri said, "Magnetization curves of 3D ferromagnetic structure shows sharp steps which is related to the number of crystalline polyhedral sides. This is in complete agreement with micromagnetic simulation results. The magnetization mechanism on every side is symmetric and asymmetric vortex which its rotation in sides causes step in magnetization curves. Any of these steps could be utilized for storage of 2-bit magnetic."
The simplification of production, low cost of layer deposition, increase of magnetic states for storage and use of magnetic vortex mechanism are some of the advantages achieved in this research.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Chip Technology
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Memory Technology
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||