Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How to count nanoparticles

Abstract:
Nanoparticles of a substance can be counted and the size distribution can be determined by dispersing the nanoparticles into a gas. But some nanoparticles tend to aggregate when the surrounding conditions change. Scientists at the University of Gothenburg, Sweden, have shown that it is possible to sort and count the particles, even when they have formed aggregates.

How to count nanoparticles

Gothenburg, Sweden | Posted on October 11th, 2011

"Nanoparticles are already used in many everyday products, such as sunscreen and cosmetics. It is important to be able to determine their size, shape and surface area, in order to be able to improve their properties within various areas of application", says Ann-Cathrin Johnsson of the Department of Chemistry at the University of Gothenburg.

A nanoparticle is a particle with a diameter that is much smaller than one millionth of a metre. Such small particles are not influenced by gravity and thus they do not fall to the bottom of a liquid or gas, and instead spread out throughout the container. Their area of contact with the surrounding medium is very large due to their small size, as a result many interesting properties arise. Nanoparticles of a substance behave, quite simply, differently than large particles of the same substance.

Certain types of nanoparticles can start to aggregate in special conditions, and sometimes a so called gel may form. The process is similar to that of boiling an egg: the proteins in the egg white aggregate and form the solid-like structure that we recognise as boiled egg.

Ann-Cathrin Johnsson's thesis work has studied one of these aggregating systems, colloidal silica. The gel that forms when salt is added to colloidal silica can be used, for example, to seal rock and to stabilise soil.

"I started with a method that had been used only for analysing nanoparticles that had not aggregated, and developed it further. Nanoparticles that have aggregated can be analysed individually if a colloidal silica gel, which contains these aggregated nanoparticles, is first diluted and then dispersed into the gas phase. If the samples are analysed immediately after being diluted, this method gives an accurate picture of the gelated system.

####

For more information, please click here

Contacts:
Ann-Cathrin Johnsson
University of Gothenburg
+46 31 786 90 67

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Tools

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project