Home > News > A Small Revolution: In fewer than 15 years, nanomedicine has gone from fantasy to reality.
October 1st, 2011
A Small Revolution: In fewer than 15 years, nanomedicine has gone from fantasy to reality.
Abstract:
Many trace the origins of nanomedicine to a talk Richard Feynman gave at Caltech in 1959—There's Plenty of Room at the Bottom. During the lecture, Feynman proposed the idea of chemical manipulation at the atomic level and suggested that patients might one day "swallow the surgeon" in the form of tiny machines. Some 50 years later, researchers are still working to realize these dreams, but Feynman would no doubt be impressed by the list of nanomedicine applications being developed today. Nanomaterials have made their way into drug-delivery systems and diagnostics, and are quickly becoming essential basic research tools.
Of course, the reality of nanomedicine doesn't exactly fit Feynman's fantasies. The silicon chip boom of the 1980s gave chemists the technology they needed to manipulate substances at the nanoscale. But chemists weren't necessarily thinking about biomedical applications when they first started working with nanomaterials. "People were playing around with matter partly because they could," says Paul Alivisatos, a chemist at the University of California, Berkeley, and a pioneer in nanotechnology. One of the most famous discoveries of this exploratory period was the buckyball, a carbon nanoparticle with a unique geodesic-like structure that earned its discoverers the 1996 Nobel Prize in chemistry, even though it wasn't obvious at the time that there would be any real-world applications for so-called fullerenes. "I think it was a real evolution in the field when it became more clear that there could be a lot of impact in medicine," says Alivisatos. "Applications emerged in areas people hadn't anticipated." Today fullerenes are being developed as drug carriers and for other nanomedicine applications.
Source:
the-scientist.com
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |