Home > Press > CNST Researchers Demonstrate Electo-Optic Modulation of Single Photons from a Quantum Dot
Abstract:
In a recent article in Applied Physics Letters,* CNST researchers demonstrated how commercially available electro-optic modulators can be used to tailor the single photon output of quantum dots (QDs) for use in broadband quantum memories and other systems. Nanoscale light-emitters such as semiconductor QDs are leading candidates for the stable generation of single photons "on demand" for use in communications, information processing, and metrology. To create such photons, a train of laser pulses can be used to optically excite a single, epitaxially-grown semiconductor QD, which then emits a train of single photon pulses.
However, the temporal profile of these single photon pulses, described as a photon wave packet, is typically not ideal for use in quantum information processing. Using commercial, high-performance telecommunications electro-optic modulators, the researchers were able to temporally manipulate these wave packets to produce a variety of shapes, including optimally-shaped Gaussian pulses. Compared to previous work, this approach reduced the modulation timescale more than two orders of magnitude, reaching the sub-nanosecond regime needed for semiconductor QDs. Finally, the researchers proposed that such electro-optic modulation may be a method for improving the quality of single photons from existing QD sources. Because of decoherence, single photons generated by a QD are not identical, and instead have different wave packets. Electro-optic modulation could be a flexible and spectrally broadband way to select for the decoherence-free portion of the QD emission, and thereby improve the photon indistinguishability needed for quantum information processing applications.
*Subnanosecond electro-optic modulation of triggered single photons from a quantum dot, M. T. Rakher and K. Srinivasan, Applied Physics Letters 98, 211103 (2011).
####
For more information, please click here
Contacts:
Kartik Srinivasan
301-975-5938
Copyright © NIST
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Quantum nanoscience
Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026
MXene nanomaterials enter a new dimension Multilayer nanomaterial: MXene flakes created at Drexel University show new promise as 1D scrolls January 30th, 2026
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||