Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Space suit safety

Work by Kate Gurnon could improve space suit safety for NASA astronauts
Work by Kate Gurnon could improve space suit safety for NASA astronauts

Abstract:
Kate Gurnon, a doctoral student in the Department of Chemical Engineering at the University of Delaware, will spend the next year studying materials that show promise to improve MMOD resistance in the next generation space suits as a NASA Delaware Space Grant Fellow.

by Annie Marshall

Space suit safety

Newark, DE | Posted on June 16th, 2011

Astronauts are exposed to many dangers in space, particularly debris encountered while working outside the aircraft.

Micrometeoroid orbital debris (MMOD) are sub-centimeter sized particles that can travel up to 19 kilometers per second and have the potential to penetrate space suits, placing astronauts at risk and sometimes forcing them to abort their mission.

Kate Gurnon, a doctoral student in the Department of Chemical Engineering at the University of Delaware, will spend the next year studying materials that show promise to improve MMOD resistance in the next generation space suits as a NASA Delaware Space Grant Fellow.

The one-year, $26,000 grant will fund Gurnon's research on Shear Thickening Fluids (STFs), a novel nanotechnology with the potential to make nanoparticles in a carrier fluid become stiff and dissipate energy, creating a protective layer on select materials. When incorporated into ballistic textiles, such as Kevlar, STF nanocomposites demonstrate increased ballistic protection and puncture resistance.

Gurnon is advised by Norman J. Wagner, Alvin B. and Julia O. Stiles Professor of Chemical Engineering and department chair, and John W. (Jack) Gillespie, Jr., Donald C. Phillips Professor and director of UD's Center for Composite Materials. Her research focuses on a new approach to dynamic materials testing, Large Amplitude Oscillatory Shear (LAOS), which will enable her to develop rheological equations that describe the stress state of STFs under dynamic loading.

"Nanocomposite material performance research is a complicated, yet crucial element in engineering STFs for spacesuit applications," explains Wagner. "Kate must consider not only impact loads and deformation fields, but also how STF composition and microstructure will perform in space."

If successful, her work could lead to more durable, penetration resistant materials for space suits. Gurnon says she hopes the fellowship will also help her become a scientific leader in nanomaterial design and applications, and a role model for future female engineers.

"By disseminating knowledge of the potential advantages of STF technology to a broad audience, I have the opportunity to influence other young women, like myself, to pursue a career in science and technology," she says.

Gurnon is a member of Tau Beta Pi, the national engineering honors society.

The University of Delaware is a Land Grant, Sea Grant and Space Grant institution. Grants are offered to each of these distinct research areas to foster the growth of information by promoting education and providing funds for researchers.

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Possible Futures

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Aerospace/Space

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project