Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NSF grant to fund theoretical models of thermal conductivity

Abstract:
A nearly $200,000 National Science Foundation grant will fund continued Cornell research on theory-based calculations of how certain materials conduct heat, which could lead to better engineered materials and devices.

NSF grant to fund theoretical models of thermal conductivity

Ithaca, NY | Posted on May 31st, 2011

Derek Stewart, senior research associate with the Cornell NanoScale Science and Technology facility, received the grant in collaboration with David Broido, professor of physics at Boston College.

Accurate theoretical modeling of thermal transport in materials due to lattice vibrations is essential to numerous fields including microelectronics cooling, thermal barrier coatings and thermoelectronics.

At Cornell, researchers will focus on first-principles calculations of thermal conductivity in such crystalline materials as lead chalcogenides and certain classes of semiconductors, and also recently developed nanostructured semiconductor alloys that contain embedded nanoparticles.

The materials are characterized by their exceptionally low thermal conductivities, a key requirement for thermoelectric devices that convert heat into electricity. The planned studies should help provide insight into the underlying mechanisms for this low thermal conductivity and could identify ways to reduce it even further.

The research could eventually contribute to the development of new, highly efficient engineered materials.

####

For more information, please click here

Contacts:
Anne Ju

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Govt.-Legislation/Regulation/Funding/Policy

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project