Home > News > Leaps in paralysis recovery: electrodes, stem cells and nanotech
May 23rd, 2011
Leaps in paralysis recovery: electrodes, stem cells and nanotech
Abstract:
As the search for paralysis and spinal cord injury treatments continues, scientists have been researching other approaches recently, besides electrical implants, including stem cell injections and nanotechnology.
A team at Karolinska Institutet claimed they identified dormant stem cells in the spinal cords of mice that activate during injury to produce new cells. Professor Jonas Frisén said of this finding, "The stem cells have a certain positive effect following injury, but not enough for spinal cord functionality to be restored. One interesting question now is whether pharmaceutical compounds can be identified to stimulate the cells to form more support cells in order to improve functional recovery after a spinal trauma."
A human trial of embryonic stem cell injections as a paralysis therapy is in progress at the Rehabilitation Institute of Chicago, according to the Reuters news agency.
At Northwestern University, scientists "nano-engineered" a gel injection designed to aid spinal cord regeneration by self-assembling into a supportive scaffolding for new nerve fibers growing at the injury site, they wrote.
Source:
digitaljournal.com
| Related News Press |
News and information
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||