Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New center to create models, simulations to improve solar cells

This graphic shows color-coded simulation results from advanced computational models used to characterize the properties of materials used in organic photovoltaic solar cells in efforts to better understand the physics involved and to improve the technology. The new Network for Photovoltaic Technology research center led by Purdue University and funded by the Semiconductor Research Corporation, aims to develop such computational capabilities for broad range of PV technologies for higher efficiency and reduced manufacture cost. (B. Ray, P. Nair, E. García, and M. Alam, Purdue University)
This graphic shows color-coded simulation results from advanced computational models used to characterize the properties of materials used in organic photovoltaic solar cells in efforts to better understand the physics involved and to improve the technology. The new Network for Photovoltaic Technology research center led by Purdue University and funded by the Semiconductor Research Corporation, aims to develop such computational capabilities for broad range of PV technologies for higher efficiency and reduced manufacture cost. (B. Ray, P. Nair, E. García, and M. Alam, Purdue University)

Abstract:
Purdue University will lead a new research center to improve photovoltaic solar cells as part of a national effort to bring alternative energy technologies to the marketplace.

New center to create models, simulations to improve solar cells

West Lafayette, IN | Posted on July 27th, 2010

The work is funded by the Semiconductor Research Corporation, a university-research consortium for semiconductors and related technologies. The SRC has established a $5 million energy research initiative, teaming companies with university research centers to work on alternative energy technologies.

The new Network for Photovoltaic Technology will be led by Ashraf Alam, professor of electrical and computer engineering, and Mark Lundstrom, the Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering.

Work in the center, based at the Birck Nanotechnology Center at Purdue's Discovery Park, will address performance, cost, reliability and manufacturing challenges of photovoltaic cells, which convert sunlight into electricity.

"The center will take advantage of Purdue's extensive modeling and simulation expertise and our national Network for Computational Nanotechnology," said Richard Buckius, Purdue's vice president for research. "The NCN provides analytical models and simulation tools for photovoltaic manufacturers, much as Purdue has done for the semiconductor industry."

Photovoltaics is a clean energy source, and few other power-generating technologies have as little environmental impact. However, the technology faces several hurdles, primarily costs relating to power generation and transmission. Researchers are working to develop new cells that are less expensive to manufacture, which would reduce costs associated with photovoltaics.

In addition to the photovoltaics center, the initiative includes a smart grid research center at Carnegie Mellon University to support the incorporation of renewable energy resources and provide modeling, simulation and control tools needed to manage, optimize and secure the power grid.

Research in the Purdue-based center will initially address the need for new modeling and simulation tools to support the development of improved photovoltaic devices.

Since the 1960s, the semiconductor industry has been developing advanced computational models and simulations, which have become critical for the design of electronic devices and have enabled industry to develop new technologies and products.

"We want to do the same thing for photovoltaics," Lundstrom said. "This will be the first center to emphasize the role of models and simulations in this area, and we will seed knowledge gained in this work to industry and other research centers. We're getting in on the ground floor."

The work will include research to precisely characterize the properties of materials used in photovoltaic cells in efforts to better understand the physics involved. Computational models and simulations will enable researchers to test concepts and reliability and also to accelerate the aging of solar cells to see how long they will last.

"Any estimate of the cost of photovoltaics assumes the cells will last for 20 to 30 years, but what if they're more likely to last 60 years? The cost landscape among competing clean technologies can be altered dramatically as a result," Alam said.

The work builds on previous modeling research led by Alam and Lundstrom to develop advanced models for predicting the performance and reliability of new designs for silicon transistors. The same sort of modeling will now be used for photovoltaics. The initiative also aims to train and educate students, providing them with the expertise and skills needed to transition these new methods into the marketplace.

The work is associated with an interactive Web site called nanoHUB.org, which makes available scientific simulations, seminars, interactive courses and other specialized nanotech-related materials. It is operated by the NCN, a six-university network funded by the National Science Foundation and based at Purdue. The Intel Foundation also provides support.

The Semiconducting Research Corporation defines industry needs and invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America's highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry. More information about the SRC is available at www.src.org

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Mark Lundstrom
765-494-3515


Ashraf Alam
765-494-6441

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project